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ABSTRACT

A multichannel kernel adaptive filtering framework is pre-
sented that highlights relevant channels for the task of ana-
lyzing Motion Capture (MoCap) data. Functional relevance
analysis is performed over input multichannel data by com-
puting the pair-wise channel similarities to describe the main
behavior of the considered applications. Particularly, the
well-known Kernel Least Mean Square filter is enhanced us-
ing a correntropy-based similarity criterion between channel
pairs. Besides, two sparseness criteria are studied to extract
a sample subset that constructs a learning model display-
ing a good trade-off between filter complexity and accuracy.
The proposed approach allows devising complex relationship
among multi-channel time-series, revealing dependencies
among the channels and the process time-structure. The
method is tested in a well-known MoCap data set. Results
show that our framework is an adequate alternative for finding
functional relevance amongst multi-channel time-series.

Index Terms— multichannel data, functional relevance,
adaptive filtering, MoCap data.

1. INTRODUCTION

In machine learning applications it is difficult to interpret
the available information due to its complexity and its large
amount of extracted features. Mostly, input data hold differ-
ent structures varying over time. So, along with spatial sta-
tistical relationship, we have to deal with data time structure.
Besides, the instantaneous random variables are hardly ever
independently distributed, i.e., stochastic processes possess
a time structure [1]. Moreover, since input data often con-
sist of multi-channel time-series, there is a need for making
clear inter–channel relationship. Regarding this, complete
information to solve such kind of problems resides in the
joint probability density function of multivariate data, but it
is never done due to its high-dimensionality [2]. On the other
hand, approaches based on kernel adaptive filtering aim to re-
veal nonlinear structure of the time-series by means of kernel
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functions, however, for multi-channel series, they commonly
assume inter channel independence [3, 4].

As a real-world application of interest, Motion Capture
(MoCap) videos, which are related to human activity record-
ings, contain a set of channels interacting each other accord-
ing to human behavior. Such a data is commonly used for
nonmechanical analysis and for tracking human 3D articu-
lated motions [5]. Particularly, estimating 3D location and
orientation of the human joints is notoriously difficult, be-
cause it is a high-dimensional problem and is riddled with am-
biguities coming from noise, monocular imagery, and occlu-
sions. Some machine vision based approaches employ prior
models to highlight such temporal and spatial relationships
among time-series to enhance 3D prediction accuracy. Linear
models (e.g. PCA) are among the simplest priors [6], how-
ever, they restrict model expressiveness leading into inaccu-
racies when learning complex motions. Other works aim to
deal with such a complexity by means of non-linear dimen-
sionality reduction techniques [7, 8], aiming to preserve the
manifold local structure, but tend to fail when manifold as-
sumptions are violated, e.g., in the presence of noise, or mul-
tiple activities. Additionally, other frameworks are based on
probabilistic latent variable models [5], which impose some
priors according to the estimated covariance that governs data
distribution. Nonetheless, they require many samples to prop-
erly model the hidden process, generating complex functions
that tend to infer biased models. Overall, when analyzing
MoCap most of proposed algorithms do not consider directly
both time-structure and joints dependencies of data, assuming
that the channels are independent each other.

Here, inspired on the Kernel Least Mean Square - KLMS
adaptive filter [4, 3], and using a correntropy based similar-
ity function [9], a functional relevance framework for multi-
channel models learning online is introduced. KLMS is ex-
tended to take advantage of input data pair-wise similarities
describing the main behavior of considered time-series. Ad-
ditionally, two significance measures are studied: kernel and
Minimum Description Length based to update the filter model
along the time. Using those criteria, an input subset is ex-
tracted to construct a learning model that preserves a trade-off
between filter complexity and accuracy. As the first approach,
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our algorithm is tested on a well-known MoCap database for
tracking 3D human joints. Since our goal is to demonstrate
the proposed approach capability to highlight the main hu-
man poses of a given video, we consider both the temporal
data structure given by the adaptive filter scheme, and the
inter-channel relationships given by the proposed functional
relevance estimation stage.

2. MULTI-CHANNEL FUNCTIONAL RELEVANCE

Let XXX ∈ ℜp×T be a multi-channel input matrix, with p chan-
nels and T samples, where each row vector xxx of XXX can be
treated as a real-valued time-series. Here, to discover both
the spatial and temporal relationships among channels, each
channel is analyzed using a sliding window of size L, where
L is the embedding dimension [10]. Therefore, the em-
bedding data representation HHH ∈ ℜp×L×n is calculated as
hhhi

t =
[
Xi,L(t−1)+1, . . . ,Xi,L(t−1)+L

]
, where hhhi

t ∈ ℜ1×L is the i-th
row of the t-th matrix HHHt ∈ ℜp×L in HHH, with i = 1, . . . , p
and t = 1, . . . ,n (n = T/L). So, our goal is to find from
HHH the spatial relationships into each time embedding slid-
ing window. To this end, given a matrix HHHt with row vec-
tors hhhi

t , the similarity among channels can be estimated by
κS(hhhi

t ,hhh
j
t ) = ⟨ϕ(hhhi

t),ϕ(hhh
i
t)⟩, where κS(·, ·) is a kernel function

[11]. Through the so called ”kernel trick”, ϕ(·) may not need
to directly computed. Then, the well-known Gaussian kernel
is considered as κS(hhhi

t ,hhh
j
t ) = exp(−∥hhhi

t −hhh j
t ∥2

2/2σ2
S), being

σS ∈ ℜ+ the kernel band-width. Therefore, the relationship
among channels at instant t-th is extracted as a pair-wise
feature representation, which is the multichannel relevant
matrix SSS ∈ ℜp×p×n, with elements Si, j

t = κS(hhhi
t ,hhh

j
t ), where

SSSt ∈ ℜp×p is the matrix of the t-th time window.
Regarding this, in multichannel activity data there are

many channels that are not relevant for a given task, but
become relevant for another. In this sense, instead of us-
ing all the channels all the time, it is preferable to highlight
such pair-wise similarities from SSS that become relevant for
the studied process. Thus, a measure of similarity on the
spatio-temporal data based on correntropy is introduced [9].
Correntropy is a kind of localized measure to estimate how
similar two random variables are: when two random vari-
ables are very close, correntropy equals the 2-norm distance,
which evolves to 1-norm distance if two random variables get
further apart, even falls to zero-norm as they are far apart.
Hence, we propose to estimate the similarity between two
spatio-temporal matrices as

κK(SSSt ,SSSt ′) =
1
p2 ∑

i, j
exp

(
−
|Si, j

t −SSSi, j
t ′ |

2

2σ2
K

)
, (1)

where σK ∈ ℜ+ and Si, j
t can be considered as a functional

connection weight between channels i and j, and SSSt is sym-
metric with respect to the main diagonal. Now, to highlight
relevant functional connections among channels in an online

fashion while considering the data temporal structure, a ker-
nel adaptive filtering framework will be extended to deal with
the correntropy based spatio-temporal relationships.

2.1. Kernel adaptive filtering for multichannel data

Given a sequence of input-output pairs {(SSS1,y1), . . . ,(SSST ,yT )},
and based on risk minimization analysis, our main goal is to
compute the continuous mapping yt = f (SSSt), where yt ∈ ℜ
is a given output signal that is related to the interactions
immersed in SSSt . Indeed, from the above proposed multi-
channel analysis, the learning function can be defined as
f : S×S → ℜ, where S ⊆ ℜp×p. A kernel adaptive filter is
a kernel sequential estimator of f , such that ft is updated on
the basis of the last estimate ft−1 and the current input-output
pair {SSSt ,yt} [3]. In this sense, Kernel Least Mean Square
- KLMS appears as an extension of the well-known Least
Mean Square - LMS based adaptive filter [4]. KLMS aims to
exploit the kernel mapping from an input space to a RKHS,
being able to deal with nonlinear relationships among sam-
ples. Thus, input data is mapped into RKHS, on which the
LMS adaptive filtering is applied as f1 = 0

et = yt − ft−1(SSSt)
ft = ft−1 +ηetκK(SSSt , ·)

, (2)

where ŷt = ft−1(SSSt) = ∑t−1
r=1 αrκK(SSSt ,SSSr), 0 < η < 1 is the

filter step size, and αr = ηer. Here, κK(·, ·) is the proposed
correntropy based similarity function in (1). Note that KLMS
uses all learned observations to estimate the output of a new
input, however, it involves a complex function that may lead
to over fitting, not mentioning its high computational load. In
this regard, two KLMS based quantization criteria will be ex-
tended to obtain an adequate trade-off between system com-
plexity and accuracy performance.

The first quantization criterion is inspired on the Quan-
tized Kernel Least Mean Square - QKLMS algorithm [3],
which aims to discover the main model structure along the
time by computing the Euclidean distance on the original in-
put space between a given sample and the codebook. As an al-
ternative, here we propose to estimate the similarity between
the new sample and the system model taking advantage of the
RKHS. So, let CCCt−1 ∈ Sct−1 be the KLMS system codebook at
t − 1 instant with network size ct−1. Provided a new sample
the quantization measure ΨK is estimated as

ΨK(SSSt ,CCCt−1) = max
r

κK(SSSt ,CCCr
t−1), (3)

quantizing SSSt by CCCr∗
t−1 ∈ S based on the threshold γ ∈ ℜ+.

Now, the second quantization criteria is based on the Min-
imum Description Length - MDL as a measure of model sim-
plicity, which implies the model with the least description
length as the best [12]. We proposed to analyze both com-
plexity and accuracy of the system by extending the MDL al-
gorithm including functional relevant representations. Thus,
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given a new sample, the costs of adding this data into cen-
ter dictionary and merging it into the nearest center are com-
pared. For this purpose, a sliding window of size Lw is studied
yielding the MDL based cost function ΨM as follows:

ΨM(SSSt ,CCCt−1)= log(Lw)+log(
t

∑
l=t−Lw

ê2
l )

Lw
2 −log(

t

∑
l=t−Lw

ē2
l )

Lw
2 ,

(4)
being êl = e′l −ηetκK(SSSt ,SSSl) the prediction error after adding
a new center and ēl = e′l −ηetκK(CCCr∗

t−1,SSSl) is the error after
merging the new data using (3). Note that MDL approxima-
tions are inferred according to the last model at t time instant
{CCCt−1,αααt−1}. Such a model is used to estimate the outputs
into the subwindow, that is, e′l = yl −∑ct−1

r=1 αr
t−1κK(SSSl ,CCCr

t−1).
So, if ΨM(SSSt ,CCCt−1) > 0 in (4), SSSt must be merged, other-
wise, it is added to the coodebook. In Algorithm 1, the pro-
posed Functional Relevant based extension of Quantized Ker-
nel Least Mean Square - FRKLMS is presented. Note that
when MDL cost function is used, γ = 0.

Algorithm 1: FRKLMS
Input: SSSt ∈ S,yt ∈ ℜ, 0 < η < 1, σK > 0, γ ≥ 0
Output: ŷt ∈ ℜ,CCCt ∈ Sct ,αt ∈ ℜct

CCC1 = {SSS1},α1 = {ηy1};
while {SSSt ,yt} (t > 1) available do

ŷt = ∑ct−1
r=1 αr

t−1κK(SSSt ,CCCr
t−1)

et = yt − ŷt
r∗ = argmax

r
κK(SSSt ,CCCr

t−1)

if ΨK/M(SSSt ,CCCt−1)> γ then
CCCt =CCCt−1 αr∗

t−1 = αr∗
t−1 +ηet αααt = αααt−1

else
CCCt = {CCCt−1,SSSt} αααt = {αααt−1,ηet}

return

3. EXPERIMENTAL SET-UP AND RESULTS

To test capability of the proposed approach in finding the
main dynamics of multi-channel time-series, a 3D human
pose task is studied. Particularly, the well-known CMU
Motion Capture Database - MoCap is used. Data hold 12
Vicon infrared MX-40 cameras recording at 120 Hz with 4
megapixel-resolution images. Subjects wear a black jump
suit with 38 markers taped on while the infra-red cameras
see the markers. Taken images by several cameras are trian-
gulated to get 3D data representation. Then, motion activity
of each subject is recorded in a BVH format video. For the
concrete testing, the following activities are studied: walking
(subject 02 video 01), jumping (subject 02 video 04), bas-
ketball (subject 06 video 15), and dancing (subject 05 video
11). Hence, we obtain 2D data by projecting from the 3D
format into 2D. Thus, provided that MoCap video is given,

an input multi-channel matrix XXX ∈ ℜp×T is obtained, where
p = 38 × 2 = 64 corresponds to the synthesized 2D angle
coordinates, and T represents the frame sequence number.

Regarding the third coordinate yyy ∈ ℜT×1, it will be in-
ferred based on the proposed FRKLMS by learning the func-
tion ŷyy = ft−1(SSSt). In this case, each input frame xxxt is normal-
ized with respect to the Hips joint, that is, this joint must be
always centered at the (0,0,0) position. So, each input ma-
trix XXX is used to find the multi-channel time-series embedding
matrix HHH, fixing empirically the sliding window size value
as L = 25 with 80[%] of overlapping. After that, functional
relevant based representation among channels is estimated
using the Gaussian kernel with σS fixed as the mean value
of the input Euclidean distances among hhhi

t vectors. Lastly,
the functional relevance based adaptive filter that is described
in Algorithm 1 is performed. It is worth nothing that the
correntropy based temporal relationships are computed using
the σK value as the mean Frobenious norm among SSSt matri-
ces. Note that proposed FRKLMS is tested using both quan-
tization criterion, kernel and MDL based (FRKLMSK and
FRKLMSMDL). In addition, the filter parameters are fixed
empirically as γ = 0.9, η = 0.75, and Lw = 5. To evalu-
ate system robustness against different testing noise condi-
tions, the input data XXX is corrupted with additive white Gaus-
sian noise to get different Signal to Noise Ratio conditions -
SNR, SNR = {2,5,10,15,25}[dB]. As a baseline approach,
the KLMS is applied [3], but for this case of multi-channel
time-series, each row vector of XXX is employed as the filter
input. Additionally, KLMS is also quantized using kernel
and MDL based measures (KLMSK and KLMSMDL). In Fig.
1, some FRKLMSK visual results are shown for the studied
videos (free of noise conditions). Performance of both com-
pared algorithms is measured according to the mean Relative
Error - RE and the final network size cT , as shown in Fig. 2.

4. DISCUSSION

As seen in Figs. 1(d), 1(h), 1(l), and 1(p), the different re-
lationships among channels for each activity are highlighted.
Overall, there are some channels which share high similar-
ity according to the given human pose, encoding the main
functional relevance of the studied movement. Likewise, re-
lationships are highlighted when analyzing the temporal ker-
nel matrices (Figs. 1(c), 1(g), 1(k), and 1(o)). Note that other
kernel functions can be used to compute the functional rela-
tionships, e.g., linear, polynomial, Laplacian, etc. In any case,
an application task at hand can be adapted to a concrete kernel
function depending on the available user’s prior knowledge.

In this work, after visual inspection of Fig. 1(c), one can
notice how the cyclic pattern of the walking movement is in-
ferred by the filter. This fact is corroborated by the KPCA
projection of the KKK matrix, as shown in Fig. 1(b). Moreover,
such a cyclic behavior is related with the main poses of the
gait, which are revealed by the filter final codebook, as seen
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Fig. 1. Visual results. First column: Main codebook (MoCap space). Second
column: KPCA projection. Third column: Kernel relationships among functional con-
nectivity. Fourth column: Functional connectivity matrix example.
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Fig. 2. Learning results (—KLMSK, —KLMSMDL, —FRKLMSK,
—FRKLMSMDL). First column: walking. Second column: jumping. Third column:
basketball. Fourth column: dancing.

in Fig. 1(b). Similar behavior is observed in the jumping
video, as seen in Fig. 1(g) that shows the temporal relation-
ships among functional relevant channel interactions. Here,
the filter discovers two jumping cycles and one static state at
the end of the video, since the subject jumps twice and then
just stands for a while. In fact, the KPCA projection allows
corroborating this behavior, as seen in Fig. 1(f). Regarding to
more complex activities, in Fig. 1(k) tree main functional as-
semblies can be seen for the basketball video. In this case, the
proposed approach is able to discover the preparing, shooting,
and standing up states of the basketball activity (see main
poses in Fig. 1(i)). Additionally, the KPCA projection re-
veals above mentioned behavior in Fig. 1(j), where no cyclic
connections (circular shapes) are obtained. In turn, attained
results reveal similar behavior for dancing video. In this case,
however, there are more assemblies than for the basketball
video because of activity complexity (see Fig. 1(m)). In fact,
some cyclic patterns are discovered by the filter as seen in
the kernel temporal relationships shown in Fig. 1(o). Those
patterns can be identified visually in Fig. 1(n).

On the other hand, in most of the cases, proposed FRKLMS
gets better performance than the baseline KLMS in terms of
obtained RE results, as shown in Fig. 2. Particularly, the four
studied approaches attain an acceptable performance on the
walking video, since this is a smooth activity, not requiring
a complex function to infer it. Yet, FRKLMS estimates a
suitable learning function supplying the lowest number of
samples, as seen in Figs. 2(a) and 2(e). The same results
are obtained again for jumping, where FRKLMS outperforms
the KLMS algorithm for both considered significance based
alternatives (see Figs. 2(b) and 2(f)). Similarly, FRKLMS
outperforms again the baseline algorithm for basket and danc-
ing videos, as seen in Figs. 2(c), 2(d), 2(g), and 2(h). This
advantage can be explained based on the proposed functional
relevant representation, which highlights the joint relation-
ships as an assembly, before applying the recursive kernel
based filter. Thus, the temporal structure and the statistical
dependencies among channels are suitable discovered.

Regarding to the employed significance measures, over-
all, traditional MDL based one obtains a suitable performance
with low complexity, while the kernel based one tends to build
more complex functions, decreasing the system performance
for low SNR conditions. Thus, considering both the predic-
tion error and the input data similarities into the quantization
stage, as in MDL, allows to attain a better performance than
only considering the input data similarities.

5. CONCLUSIONS

A functional relevance analysis approach is proposed to an-
alyze multi-channel time-series. From the introduced rep-
resentation, a kernel based adaptive filtering framework is
extended to take advantage of the input data pair-wise sim-
ilarities using a correntropy based function [1]. In addition,
two significance measures are studied: kernel and MDL
based, which are used to extract an inputs subset that allows
to learn a model preserving a trade-off between filter com-
plexity and accuracy. Our approach is tested on a well-known
MoCap database for tracking 3D human joints, from which
some videos are used to track human activities. According
to the attained results, our framework provides an adequate
alternative for finding functional relevant dependencies as
an assembly into multi-channel time series. As a result, the
system accuracy improves in comparison with the baseline
KLMS [3], which does not consider directly inter channel
dependencies. It is important to note that even when our
approach is able to predict a given output time-series, it is
also useful to interpret and to analyze visually complex rela-
tionships into multi-channel time-series. As future work, it
would be interesting to perform further analysis for adapting
the kernel parameters and for generating different codebooks
along the time to deal with non stationary processes.
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