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ABSTRACT

Extraction and representation of relevant information from large-
scale surveillance systems constitute fundamental processes for al-
lowing automatic interpretation of complex scenes. In particular,
when the amount of information increases (i.e., due to a larger num-
ber of monitored areas), attention focusing techniques are needed
to highlight most relevant parts within the overall acquired data.
When wide area surveillance systems are considered, one of the ma-
jor problems in event detections is the reconstruction of the scene as
a whole, from spatially limited observations. In this paper, a novel
representation technique for sparse information, based on informa-
tion theory, is presented. Self Organizing Maps (SOMs) have been
used for classifying and correlating observed sparse data time series.
By means of Information Bottleneck theory, it is possible to deter-
mine the optimal data representation in the SOM-space as a trade-
off between the signal reconstruction capabilities and the original
data statistical similarities preservation. Proposed experiments show
how the so called information bottleneck-based SOM selection for
knowledge modelling, can be applied to the field of crowd monitor-
ing for people density map estimation and event detection. Results
are presented on synthetic and real video sequences.

Index Terms— Information bottleneck, Cognitive systems,
Anomalous event detections, Crowd monitoring, Self-Organizing
Maps

1. INTRODUCTION

Automatic representation, analysis and detection of abnormal events
is a central issue for last generation video surveillance systems. In
this context, distributed interactive and intelligent systems embedded
in physical environments can represent a breakthrough in the design
of people-oriented services applied to different application domains,
among which, crowd monitoring in large-scale environments is be-
coming one of the most relevant. Several works have been devoted in
the last decade to link traditional computer vision tasks to high-level
context aware functionalities such as scene understanding, interac-
tion classification and recognition of possible threats or dangerous
situations. For instance, in [1] a method for crowd behaviour analy-
sis based on social forces and optical flow is proposed. In [2] the au-
thors present an innovative method based on people flow estimation.
In order to detect crowd events, a new abstract viscous fluid field
has been proposed in [3]. More recently, in [4], a people trajectories
based social force model has been proposed for describing interac-
tions among the individual members of a group of people. Different
features have been considered for automatic crowd analysis: local
features (e.g., features from accelerated segment test - FAST) can be

used for people detection, while optical flow efficiently estimates hu-
man motion [5]. Considering such features it is possible to evaluate
the density of a crowd ([6, 7]).

Video crowd analysis frameworks in the state-of-the-art typi-
cally do not address two major problems that arise when an higher
number of sensors are used: rigorous methods for obtaining 1) opti-
mal information representation able to maintain the informativeness
of acquired low level features, as well as 2) compact description to
reduce the processing complexity due to an ever increasing amount
of information, are needed.

The problem of information overload can be avoided through an
automatic method for selecting subparts of the guarded environment
and focusing operators’ attention on most informative regions, such
as the one proposed in [8]. In Figure 1.a an example of relevant infor-
mation extraction, which is defined as sparse information, is shown.
The main problem, for event detection and classification mecha-
nisms, is related to the reconstruction accuracy of original data from
incomplete and limited observations. Typical tasks in crowd mon-
itoring applications consist in recognizing particular events within
the crowd itself, such as presence of crush in forbidden areas or sus-
picious movements. For instance, in Figure 1.a two events of interest
can be defined when the crowd flow crosses red and brown lines, re-
spectively. An approach based on Self Organizing Maps (SOMs) for
reconstructing observed signals is presented in [9]; more recently,
a SOM-based algorithm for defective image restoration is proposed
[10]. In particular, it is highlighted how the SOM-based method
performances depend on Kohonen-layer size. Other artificial neural
networks derived from SOMs, such as Growing Neural Gas (GNG)
(see [11]) and Growing Hierarchical SOM (GH-SOM) (see [12]),
can automatically adapt the dimension of the Kohonen-layer. More
in details, GNG computes an accumulated local error, which repre-
sents a distance measurements between two neuronal weights, and
increases the number of neurons if this is considered too large. Sim-
ilarly, in GH-SOM the increase of the number of neurons and layers
is based on distance measurements between neuronal weights and
input data. Another type of neural network (Neural Gas (NG)) can
improve the input data topology preservation through an adaptive
method based on learning of neighbourhood relationships between
the weight vector (associated with neuronal unit) and each external
stimuli (associated with input vector).

These mechanisms of adapting layer sizes and topology preser-
vation are mainly addressed towards original data reconstruction.
The problem of recovering the signal from sparse data, requires more
than just reconstruction accuracy: it is indeed necessary to preserve
the similarities between relevant information and original data (i.e.,
input signals). This SOM-layer size optimization problem can be
represented by means of specific cost function, which relies on In-
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formation Bottleneck theory [13].

(a) Relevant events. (b) Crowd density map.

Fig. 1: Relevant information extraction and crowd density map es-
timation. a. The coloured circles specify important subparts of the
scene; optical flow features represent sparse relevant information. b.
Crowd density map estimation by Lucas-Kanade [14] optical flow
features.

The contributions of this paper are as follows. A novel approach
is presented, based on information bottleneck, for designing a cost
function able to quantify the SOM trade-off between the capability to
recover original signals and preserve statistical similarities between
sparse relevant information and original data. It will be shown how
SOMs’ correlation abilities can be measured through a mixture of
local linear regressive models associated to each neuron. Such mod-
els can be used for predicting the future values based on previous
states. Finally, by means of the proposed cost function, an algo-
rithm is described for information bottleneck-based SOM selection
(IB-SOM). The proposed framework has been applied to crowd mon-
itoring domain for people density estimation and event recognition
on video real sequences extracted from public database PETS [15].
Moreover, proposed approach is compared to other neural networks,
such as NG, GNG and GH-SOM. The remainder of the paper is or-
ganized as follows: in Section 2 the information bottleneck-based
SOM selection for relevant knowledge representation is presented;
experimental results are described in Section 3, while conclusions
are drawn in Section 4.

2. INFORMATION BOTTLENECK-BASED RELEVANT
INFORMATION REPRESENTATION

This section describes the proposed relevant information represen-
tation method applied to video-surveillance. In the communica-
tion system theory, encoding a time-varying multi-dimensional sig-
nal X(t) is a common approach for extracting relevant information
from it. The available information acquired from video-surveillance
network can be defined as the vector X = [X1,X2, · · · ,XN ] where
X ∈ X with X ∈ RN and X is a sample of X(t), which has been ac-
quired at sampling time t. For crowd monitoring applications, Xi rep-
resents people density in each i−th monitored area with i= 1, · · · ,N
and N is the maximum number of guarded zones. Such a vector de-
scribes the crowd density map. It is possible to define the relevant
information X̃ , extracted at time instant t by using the attention fo-
cusing algorithm in [8], as a subset of X : X̃ ⊆ X where X̃ ∈ RM

and M ≤ N. Figure 2 shows how relevant sparse information X (i.e.,
crowd density sparse map) can be reconstructed from X̃ . The per-
centage of controlled area can be computed as a ratio between the
number of significant values in X and total available information
contained in X . The quantity X ∈ RN is a sample of the recon-
structed signal X ≈ X . The SOM projects input data (i.e., X) into

reduced dimensionality space. The neural network has the ability to
semantically represent input vectors by selecting a similar but not
necessary identical crowding density maps within the same neuronal
unit. Each neuron represents a codeword associated to a prototype
vector, i.e., a weight Wk ∈W with Wk ∈ RN , where k ∈ 1, · · · ,K and
K is the maximum number of prototype vectors within SOM-layer.

The problem can be formalized as that of representing with the
same best match unit (BMU) Ŵk the vector X and the corresponding
sparse vector X , as shown in Figure 2. The central task is here to
establish the firing properties of neuronal patterns by balancing re-
construction capabilities and correlation properties, between sparse
information and neurons. To this end, a new variable Y has been de-
fined in order to quantify the differences between sparse and original
signals. Such a variable is as informative as possible of X. Recon-
struction and correlation attributes lead to the information bottleneck
concept, which is defined as a trade-off between two average mutual
information (AMI) I(W,X) and I(W,Y ).

Fig. 2: Relevant information extraction and crowding density map
projections into SOM-space. The grid cells, laid over the image
plane, can be seen as the set of controlled areas. Each cell is as-
sociated to a number of feature extracted by Lucas-Kanade optical
flow and used for estimating the crowd density map. In this exam-
ple X ∈ R20, X̃ ∈ R5 and the sparse vector X ∈ R20. X and X are
mapped into the same unit Ŵ16. The percentage of controlled area
corresponds to 40% (i.e. 2|5).

The first term I(W,X) denotes the reconstruction measurement;
according to the Rate Distortion theory, it should be minimized de-
pending on the allowed distortion dW introduced by the mapping
process. Such a distortion is measured by the conditional entropy
H(X |W ): more details are given in [16]. The second term I(W,Y )
represents the correlation measurement between sparse and original
data, which should be maximized. A practical measure of the corre-
lation is proposed as the difference between statistical relationships
of data, described by p(Y,X), and neuronal unit correlation capabil-
ities which are defined by p(Y,W ). Where p(Y,X) and p(Y,W ) are
two joint probabilities.

The quantities p(Y,W ) and p(Y,X) can be estimated by using
the SOMs for dividing the set of input data (i.e., X) into different
multivariate time series {Xk}K

k=1 where Xk =
{

X1,k, · · · ,Xn,k
}

asso-
ciated to the k− th neuron, such as Xk ∪X j = ∅ with k 6= j and⋃K

k=1 Xk = X [17]. These sub-sequences of vectors can be modelled
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by local Vector Auto Regressive (VAR) models [18]. The number of
generated VAR models corresponds to the number of neurons of the
SOM. Considering a multivariate time series Xk, an auto regressive
model of order m, denoted as VAR(m), describes the i− th vector
Xi,k as linear combination of the previous state vectors:

Xi,k = Φ0 +Φ1Xi−1,k +Φ2Xi−2,k + · · ·+ΦpXi−p,k + εi,k, (1)

where Φ0, · · · ,Φp are (N×N) parameter matrices and εi represents
a (N × 1) Gaussian noise. By the multivariate time series Xk we
have modelled a VAR(2) as Xi,k = Φ̂0 + Φ̂1Xi−1,k + Φ̂2Xi−2,k + εi,k,
where Φ̂0, Φ̂1 and Φ̂2 are estimated coefficient matrices which are
stored in each SOM node. In order to determine the fitting of the
data to the VAR(2) models, error terms are estimated as follows:
ε̂i,k = Xi,k− [Φ̂0 + Φ̂1Xi−1,k + Φ̂2Xi−2,k].

The error vector associated to each neuron is denoted with ε̂k.

The average of ε̂k is denoted with Yk =
1
N

N
∑

c=1
ε̂k,c, where ε̂k,c is c−th

component of ε̂k.
It is supposed that p(Y,W ) = N (0,σY,W ) is the joint pdf be-

tween Y and W, where σY,W = E{Yk
2}−E{Yk}2. For expressing

the quantity p(Y,X), it is sufficient to define only one VAR(2) and
this can be used for modelling all input data X. The same approach
can be used for estimating p(Y,X).

Fig. 3: Kullback-Leibler divergences DKL for two Gaussian prob-
ability density functions p(Y,W ) and p(Y,X). The information
lost has been represented by distance metric between p(Y,W ) and
p(Y,X) (see Table 1).

The optimal SOM-layer size can be obtained by minimizing the
modified cost function based on information bottleneck, as follows:

F = min
p(W,X)

{H(X |W )+λDKL[p(Y,W )‖p(Y,X)]}; (2)

where Kullback-Leibler divergence DKL[p(Y,W )‖p(Y,X)] is a mea-
sure of the difference between the two joint probability distributions
p(Y,W ) and p(Y,X). Figure 3 shows that a larger SOM-layer (e.g.
K = 100 neurons) present higher DKL values (i.e., poor correlation
quality) than smaller SOM (e.g., K = 4 neurons).

It can be noticed that DKL describes an effective distortion mea-
surement. In Equation 2 the λ parameter was introduced, which
can balance the information bottleneck. In particular when λ → 0,
the cost function privileges reconstruction capabilities of the SOMs,
(i.e., larger SOM-layers will be selected). Vice versa when λ →
∞, F selects the correlation properties of the SOMs, (i.e., smaller
SOM-layers will be selected).

Table 1: Cost function parameters. For evaluating DKL, two di-
vergence normalized density functions p(Y,X) = N(0,0.9996) and
p(Y,WK) are being considered.

SOM H(W |X) DKL p(Y,W ) drW d pW

2×2 2,38 0,005 N(0,0.94) 0,842 0,3201
λ ∈ (1.28÷∞)

5×5 2,04 0,27 N(0,1.88) 0,623 0,4018
λ ∈ (0.48÷1.28]

7×7 1,89 0,60 N(0,3) 0,417 0,53
λ ∈ (0.32÷0.48]

10×10 1,78 0,96 N(0,4) 0,209 0,78
λ ∈ (0÷0.32]

3. EXPERIMENTAL RESULTS

This section is divided into two subparts: in the first part, SOMs
training and information bottleneck based cost function evaluation
is carried out through synthetic data. Then, performances of the pro-
posed IB-SOM selection algorithm are compared with other neural
networks (GH-SOM, GNG and NG), for crowding density recon-
struction on real video sequences.

3.1. Training of SOMs and cost function evaluation on synthetic
data

A common training set is generated by using a simulator where
crowd behaviours are generated based on Social Forces model [19].
The simulator has the capability to add virtual sensors able to ac-
quire data coming from different subparts of the monitored scene. A
virtual image processing algorithm has been implemented for obtain-
ing a plausible crowd density map for each frame. Generated map
is a 32×32 matrix, which corresponds to a vector X with N = 1024
components. Four different SOMs were used, with K = 100,49,25,4
number of neurons respectively and the following layer topologies:
10×10, 7×7, 5×5 and 2×2.

Fig. 4: Normalized cost function average trends for different SOMs.
The experiments have been conducted on 100 sequences of synthetic
data provided by the simulator. Total time of each simulation is
1000secs. The validity regions are defined by intervals of λ .

By using the common training set, SOMs and other neural net-
works have been trained. Finally, the parameters for evaluating the
normalized information bottleneck-based cost function curves F are
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Table 2: Comparisons between the proposed IB-SOM selection and
other neural networks. Results are presented for different percent-
ages of controlled areas. In the table normalized reconstruction er-
rors are shown. For IB-SOM reconstruction drWK and prediction
d pWK errors have been computed. The last two rows show the aver-
ages and the variances of the errors.

IB-SOM GH-SOM GNG NG100 NG49 NG4
drW —d pW drW drW drW drW drW

100% 0,331 — 0,841 0,403 0,396 0,234 0,409 0,754
80% 0,343 — 0,5743 0,409 0,408 0,335 0,451 0,754
60% 0,355 — 0,5006 0,423 0,412 0,391 0,511 0,811
40% 0,431 — 0,4089 0,685 0,639 0,588 0,533 0,853

Average 0,365 — 0,5412 0,480 0,463 0,387 0,476 0,793
Variance 0,0015 — 0,0099 0,0140 0,0102 0,0166 0,0023 0,0017

determined (see Figure 4). In Table 1, drW and d pW represent aver-
age reconstruction and prediction errors obtained by different value
intervals of λ parameter. drW is the average error (i.e., Euclidean
distance) between the input data X and its representation W. Each
VAR model can be used as linear predictor filter. The d pW has been
defined by an average measurement of the fitting between one period
ahead forecast sequences X̂k (obtained by VAR(2) local models) and

the training data Xk: d pW = ∑
n
i=1 ‖Xi,k−X̂i,k‖

∑
n
i=1 ‖Xi,k−E{Xk}‖ .

For small λ values, such as (0÷ 0.32], the minimum of F is
given by the SOM 10× 10 (i.e., the reconstruction capabilities will
be preserved and drW > d pW ). Vice versa for higher λ values, such
as more than 1.2, the minimum of F is given by the SOM 2×2 (i.e.,
the correlation proprieties will be maintained and d pW > drW ).

3.2. Crowd density reconstruction on real video sequences

An experiment has been conducted on three available video se-
quences from PETS dataset for single camera (S1 L2 Time 14 : 06
and 14 : 31, S3 High Level Time 14 : 33 View 0001; sequences
length are 200, 130 and 377 frames respectively and frame rate is
∼ 7 [fps]). The information bottleneck theory is adopted as a practi-
cal strategy for optimal SOM selection; by using this approach it is
possible to limit the reconstruction error by varying the percentages
of controlled areas.

Under the hypothesis that the data are acquired and processed at
the same PETS sequence frame rates, λ parameter (see Equation 2)
can be defined as follows: λ ∝ d(X ,Wk)|p(W,X). Such a value can
automatically balance the bottleneck through a distortion d(·) (i.e.,
Euclidean distance), which is due to mapping process p(W,X), be-
tween observed vector X and its representation Wk. In particular,
when d(X ,Wk) is low, the reconstruction capabilities will be pre-
served (i.e., larger SOM-layers will be selected). Vice versa, when
d(X ,Wk) is high, the correlation properties of the SOMs will be
maintained (i.e., smaller SOM-layers will be selected).

The table 2 shows how the NG100 has the minimum reconstruc-
tion errors in 100% and 80% of controlled area percentages. Vice
versa when the controlled area percentages decrease (i.e., 60% and
40%) the distortions of this neural network increase. In these situ-
ations, proposed method can find the optimal SOM size. IB-SOM
selection restricts reconstruction accuracy reduction, i.e., it is able
to maintain a minimum reconstruction average error. Moreover, the
proposed approach delimits error variations, due to different percent-
ages of controlled areas (i.e., error variance).

On the other hand, when the SOM-map sizes are reduced the
prediction errors decrease as well. Finally, in Figure 5 quantitative

Fig. 5: Qualitative and quantitative results for event recognition
for PETS sequence S1 L2 Time 14 : 06 using 40% of the con-
trolled area. The figure shows the comparison between the pro-
posed method and other approaches: on the upper part crowd-
ing density map reconstructions are presented; on the lower part
distortion curves are shown. The whole video is available on
https://www.youtube.com/watch?v=KN2aYZ64TTw.

and qualitative comparison measurements for event recognition are
presented. In particular, using limited observations as well, the pro-
posed IB-SOM presents smaller distortion errors. The density map
reconstructions show how all the neural networks can identify the
first event, while only through the proposed approach it is possible
to recognize the second event.

4. CONCLUSIONS

This paper presented a novel approach for information representa-
tion. It has been applied for sparse data within a crowd monitoring
application. The proposed algorithm is a method encompassing dif-
ferent steps, which involves the application of information theory
and neural networks such as SOMs. First of all, by means of in-
formation bottleneck paradigm, a cost function has been designed
in order to balance the data reconstruction and correlation capabili-
ties of different SOMs. An information bottleneck based strategy for
SOM selection was proposed.

Finally, the IB-SOM selection method has been tested on public
datasets. The results show that the proposed approach outperforms
other neural networks (such as NG, GNG, GH-SOM) in crowd den-
sity reconstruction from very sparse observations.

Furthermore, it has been shown how such a knowledge represen-
tation can recover original crowding density maps in order to recog-
nize particular events on real video sequences.

Future developments of this work will include a detailed study
on the impact of the information bottleneck on the GH-SOM. It can
lead to improve the GH-SOM strategy for selecting the knowledge
representation among different hierarchical layers.
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