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ABSTRACT

In the context of multi-temporal synthetic aperture radar (SAR)

images for earth monitoring applications, one critical issue

is the detection of changes occurring after a natural or an-

thropic disaster. In this paper, we propose a new similarity

measure for automatic change detection based on a divisive

normalization image representation. The divisive normalization

transform (DNT) has been recognized as a successful method-

ology to model the perceptual sensitivity of biological vision

and a useful image representation that significantly reduces

statistical dependence of natural images. In this work, we

exploit the fact that the histogram of DNT coefficients within

wavelet subbands can often be well fitted with a zero-mean

Gaussian density function, which is a one-parameter function

that allows efficient change detection of SAR images. The

proposed change detector is compared to other recent model-

based approaches. Tests on real data show that our detector

outperforms previously suggested methods in terms of the rate

of false alarm rate and the total error rate.
Index Terms—change detection, Divisive normalization, Gaus-

sian scale mixture, synthetic aperture radar (SAR) images.

I. INTRODUCTION

Detecting temporal changes occurring on the earth surface by

observing them at different times is one of the most important

applications of remote sensing technology. Especially, due to

the all-weather operating ability of synthetic aperture radar

(SAR) imagery, multi-temporal SAR image change detection

has many applications, such as environmental monitoring, agri-

cultural surveys, urban studies, and forest monitoring [1]. One

critical issue in multi-temporal SAR images is the detection of

changes occurring after a natural or anthropic disaster.

Over the years, many methods were proposed to solve this

problem in the literature. The existing methods mainly fall

into two categories: bi-temporal change detection and image

time series change detection [2], [3]. Furthermore, most bi-

temporal change detection techniques can be classified into

supervised [4] and unsupervised change detection methods

[5]. In this paper, we only consider the unsupervised change

detection process for two images acquired at different time. In

general, most unsupervised change detection methods include

three steps: 1) preprocessing, such as despeckling and image

registration, 2) image comparison to generate a difference

image, and 3) thresholding the difference image to compute

the final binary change detection map [6]–[8]. In this paper,

we choose to focus on the second step, where the objective is

to find a good detector to measure the degree of the similarity

at each pixel between two image data. For the thresholding

method, the method in [6] is adopted to generate the final

change map.

For image comparison, several detectors have been pro-

posed. The classical detectors include differencing and ratioing

techniques [1], which are carried out through pixel-by-pixel

comparison. Compared to the difference operator, the ratio

operator is more robust to illumination variation, speckle noise

and calibration errors. However, the ratio operator, also known

as the mean ratio detector introduced by Ulaby [9], assumes

that the texture is a zero-mean multiplicative contribution.

As a result, it cannot detect changes taking place at the

texture level. In recent years, promising methods based on

information measures have been proposed, where the local

probability density functions (pdfs) of the neighborhood of

pixels of the pair images are compared, instead of a pixel-

by-pixel comparison. In [10], the Gaussian model has been

used to approximate the local pdf. In [11], two more flexible

models including the Pearson system, which is composed of

eight types of distributions, and one-dimensional Edgeworth

series expansion techniques, were proposed to estimate local

statistics. Note that all of these aforementioned distributions are

only dedicated to SAR images corresponding to a specific land-

cover typology. However, the actual SAR image can, in general,

show a varied scene presenting several distinct land-cover

typologies. In order to solve this problem, the Gaussian mixture

model was proposed by the authors in [12] to model the SAR

image in a locally adaptive manner since it can approximate

a variety of distributions and is suitable to model different

regions with different characteristics in the SAR image.

However, all the aforementioned methods are performed in

the spatial domain. The method proposed in [13] extends the

information measure-based methods to the wavelet domain by

using generalized Gaussian (GGD) and generalized Gamma

(GΓD) distributions to model the subband coefficient magni-

tudes. Although the method introduced in [13] achieved notable

success, there are some drawbacks of this paper. First, the

GGD and GΓD are single parametric mathematical distribution

models, which can only be used to approximate the local
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statistics when the neighborhood of each pixel belong to one

homogenous region corresponding to a specific land-cover ty-

pology. However, the actual SAR image can, in general, show a

varied scene representing several distinct land-cover typologies.

Second, the neighboring wavelet coefficients have strong high-

order statistical dependencies [14]. But the method in [13] did

not utilizes this property. Third, the wavelet decomposition is

restrictive due to its linear nature and cannot represent possible

nonlinear effects [14].

In this paper, we propose a new image comparison method

that is inspired by the recent success of the divisive normal-

ization transform (DNT) as a statistically and perceptually

motivated image representation [15], [16]. This local gain-

control divisive normalization model is well-matched to the

statistical prosperities of optical images, as well as the percep-

tual sensitivity of the human visual system [17], [18]. The DNT

is built upon linear transform models, where each coefficient

(or neuronal response) is normalized (divided) by the energy

of a cluster of neighboring coefficients (neighboring neuronal

response) [14]. This procedure can explain nonlinearities in the

responses of mammalian cortical neurons, and nonlinear mask-

ing phenoma in human visual perception, and was also em-

pirically shown to produce approximately Gaussian marginal

distributions and to reduce the statistical dependencies of the

original linear representation [19]. Therefore, we proposed a

change detection method for SAR images in the DNT domain

rather than in the wavelet domain due to the superior properties

of the DNT as mentioned above. This paper is organized as

follows. The divisive normalization transform for SAR image is

described in Section II. Section III presents the proposed image

comparison algorithm based on the DNT image representation.

Section IV presents the results on real data using the proposed

detector. Finally, conclusions are drawn in Section V.

II. DIVISIVE NORMALIZATION-BASED IMAGE

REPRESENTATION

In computational vision science, the current models of early

visual processing in the human cortex involve two stages [18]:

x
T
−→ w

R
−→ y (1)

where the image x is first analyzed by a linear image de-

composition T and then followed by a non-linear transform

(the divisive normalization) R. Here, the wavelet image de-

composition is employed as the linear image decomposition

model since it provides a convenient framework of localized

representation of images simultaneously in space, frequency

(scale) and orientation [20]. Let w and y represent wavelet

and DNT coefficients, respectively, and y = w/z, where z is

the positive divisive normalization factor that is calculated as

the energy of a cluster coefficients that are neighbors of the

coefficient y in space, scale, and orientation.

In the literature, several approaches [16], [19], [21] were

proposed to compute the normalization factor z. Among these

approaches, the convenient estimation method in [22] is adopt-

ed. This method derives the factor z through the Gaussian scale

mixtures (GSM) model. A random vector W is a GSM if it can

be expressed as the product of two independent components:

W = zU , where the mixing multiplier z is a positive scalar

random variable; U∼N(0, Q) is a zero-mean Gaussian random

vector, and z and U are independent. As a consequence, any

GSM variable has a density given by an integral [22]:

pW (W ) =

∫

1

[2π]N/2|z2Q|1/2
exp(−

WTQ−1W

2z2
)φz(z)dz (2)

where N is the length of the GSM random vector W, and φz(z)
is the probability density of the mixing variable z. The GSM

model expresses the density of a random vector as a mixture

of Gaussians with the same covariance structure Q but scaled

differently by z [14]. A special case of a GSM is a finite

mixture of Gaussians, where z is a discrete random variable.

This GSM model was shown to represent well the statistics

of the wavelet coefficients of images, where the vector W is

formed by clustering a set of neighboring wavelet coefficients

within a subband, or across neighboring subbands in scale and

orientation [22]. The GSM model has also found successful

applications such as image coding [21], image denoising [23],

image restoration [24], and image quality assessment [20].

For our application, the wavelet coefficients of SAR images

are modeled as a GSM random vector W that is formed by

clustering a set of neighboring wavelet coefficients within

a subband and that is normalized by the mixing multiplier.

The general form of the GSM model allows for the mixing

multiplier z to be a continuous random variable at each location

of the wavelet subbands. To simplify the model, we assume

that z only takes a fixed value at each location (but varies over

space and subbands). The benefit of this simplification is that

when z is fixed, W is simply a zero-mean Gaussian vector

with covariance z2Q. Thus, it becomes simple to estimate

the normalization factor z in the DNT representation from

the neighboring coefficients. The coefficient cluster W moves

step by step as a sliding window across a wavelet subband,

resulting in a spatially varying normalization factor z [14]. In

our implementation, the normalization factor computed at each

step is only applied to the center coefficient wc of the vector

W, and the normalized coefficient becomes yc = wc/ẑ, where

ẑ is the estimation of z. An efficient method to obtain ẑ is by

a maximum-likelihood estimation [22] given by

ẑ = argmax
z

{log p(z|W )}

=
√

WTQ−1W/N
(3)

where Q = E[UUT ] is the positive definite covariance matrix

of the underlying Gaussian vector U and is estimated from the

entire wavelet subband before estimating local z, and N is the

length of vector W, or the size of the sliding window of the

neighboring wavelet coefficients [14].

Before the development of the specific change detection

algorithm, it is useful to observe variations of image statistics

before and after the DNT. In Fig. 1, we compare the distri-

butions of original wavelet subbands and the same subbands
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Fig. 1. (a),(f): Original SAR images; (b),(g): Wavelet coefficients; (c),(h): PDFs of wavelet coefficients (solid curves) fitted with a

Gaussian model (dashed curves); (d),(i): DNT coefficients; (e),(j): PDFs of DNT coefficients (solid curves) fitted with a Gaussian

model (dashed curves).

Fig. 2. The block diagram of the proposed change-detection algorithm.

after DNT, for a pair of SAR images. In Figs. 1 (c) & (h), the

original wavelet coefficient distributions of the SAR images

are fitted using a Gaussian model. The noticeable difference

between the two curves (the actual pdf and the fitted Gaussian

model) shows that the original wavelet coefficients are highly

non-Gaussian. In contrast, as shown in Figs.1 (e) & (j), the

distribution of the coefficients after DNT can be well fitted

with a Gaussian. A similar conclusion is obtained for other

SAR images.

III. CHANGE DETECTION IN THE DNT DOMAIN

Let us consider two co-registered SAR intensity images

IX1 and IX2 acquired over the same geographical area at two

different times tX1 and tX2, respectively [11]. Our aim is to

generate a change detection map that represents changes that

occurred on the ground between the acquisition dates [11].

This change detection problem can be modeled as a binary

classification problem where 1 represents changed pixels and

0 represents unchanged pixels.

We propose a change detection algorithm by analyzing the

difference of local statistics of the DNT coefficients of two

acquired SAR images. A pixel will be considered as a changed

pixel if the local statistical distribution of the DNT coefficients

changes from one image to the other. In order to quantify this

change, the Kullback-Leibler (KL) divergence [25] between

two probability density functions is used. The framework of

the proposed method in the wavelet domain is shown in Fig. 2.

The first step is to decompose a sliding window at each pixel

into multiple subbands by using the wavelet transform. Then,

the DNT is performed for each subband. The third step is to

estimate for each subband the parameters (mean and variance

of the Gaussian distribution) governing the distribution of DNT

coefficients. The fourth step is to compute the symmetric

KL divergence between the estimated Gausssian PDFs of two

subbands at the same level and orientation. Thus, the similarity

map for each pair of subbands at the same level and orientation

is obtained. Finally, all the subband-specific similarity maps are

combined to obtain a final similarity map SMAP (n1, n2) by

summing the similarity maps over all subbands as follows:

SMAP (n1, n2) =

L
∑

i=1

M
∑

j=1

D(py1;i,j
‖py2;i,j

) (4)

where (n1, n2) is the location of the pixel where the sliding

window is centered; L and M are the numbers of the scales

and orientations, respectively; and py1;i,j
and py2;i,j

are the

estimated distributions of DNT coefficients at scale i and

orientation j for the considered local windows being compared.
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(a) (b) (c)

Fig. 3. Multitemporal ERS2 SAR images used in the experi-

ments: (a) image acquired in April 1999 before the flooding;

(b) image acquired in May 1999 after the flooding; (c) the

ground truth change map used as reference in the experiments.

(a) (b) (c) (d)

Fig. 4. Change detection results from different algorithms on

SAR image dataset: (a) GGDD [13]; (b) GΓDD [13]; (c)

GMMD [12]; (d) proposed method.

D is the symmetric KL distance and is given by [11]:

D(py1
, py2

) = KL(py1
‖py2

) +KL(py2
‖py1

) (5)

where KL(py1
‖py2

) is the KL-divergence between py1
and

py2
, also known as the relative entropy, and is given by [25]:

KL(py1
‖py2

) =

∫

py1
(y)log

py1
(y)

py2
(y)

dy.

As described earlier, since the divisive normalization transform

produces approximately Gaussian distributions, by using the

Gaussian model in (5), the symmetric KL divergence can be

computed as:

D(py1
, py2

) =
σ4
y1

+ σ4
y2

+ (µy1
− µy2

)2(σ2
y1

+ σ2
y2
)

2σ2
y1
σ2
y2

− 1 (6)

where µy and σy are, respectively, the mean and standard

deviation of y. In our application, µy and σy are always equal

to zero because of the DNT produce approximately zero-mean

Gaussian distributions. The final binary change detection map

is obtained by thresholding the similarity map SMAP (n1, n2).

IV. RESULTS WITH REAL DATA

Experiments are performed on a real multi-temporal SAR

dataset. As shown in Figs. 3 (a) & (b), this SAR dataset

includes two regions acquired by the European Remote Sensing

2 (ERS2) satellite SAR sensor over an area near the city of

Bern, Switzerland, in April and May 1999, respectively [6].

Between the two acquisition dates, the river flooded parts of

the cities of Thun and Bern and the airport of Bern entirely.

The corresponding ground truth change map between these two

images is shown in Fig. 3 (c).

The effectiveness of the proposed change detection algo-

rithm is assessed by comparing with other start-of-the-art

Table I. False detections, missed detections, and total errors

(in number of pixels and percentage) resulting from different

change detection algorithms on SAR image dataset.

Detector False detections Missed detections Total errors

Pixels % Pixels % Pixels %

GGDD [13] 8051 9% 66 5.71% 8117 8.96%

GΓDD [13] 3602 4.03% 270 23.38% 3872 4.27%

GMMD [12] 1884 2.11% 184 15.93% 2068 2.28%

Our method 486 0.54% 297 25.71% 783 0.86%

methods as shown in Fig. 4. The change detection maps

shown in Figs. 4 (a) & (b) are obtained by using respectively,

the wavelet-based GGD detector (GGDD) and GΓD detector

(GΓDD) [13]. The change detection map shown in Fig. 4 (c) is

obtained by using the state-of-the-art GMM detector (GMMD)

of [12] in the spatial domain. The result of our proposed

method is shown in Fig. 4 (d). Note that the same thresholding

method [6] is used for all these detectors in order to obtain the

final change map. The window size for all methods is fixed to

13×13. For the multi-scale based detectors, the sliding window

is decomposed into L = 3 scales using an undecimated wavelet

transform with a Daubechies filter bank (in our implementation,

a db 2 filter bank is used). From Fig. 4, it is clear that GMMD

and the proposed method exhibit much better performance than

the GGDD and GΓDD.

In order to perform quantitative measurement, the false

detection error, missed detection error and total error are

measured by using the obtained binary change detection mask

together with the ground truth change detection map. The

false alarm rate PFA is computed in percentage as PFA =
NFA/Nunchange × 100%, where NFA is the total number of

detected false alarm pixels and Nunchange is the total number

of unchanged pixels in the ground truth change detection map.

The missed detection rate PMD = NMD/Nchange × 100%,

where NMD is the total number of changed pixels that were

not detected and Nchange is the total number of change pixels

in the ground truth change detection map. The total error rate

PTE = (NFA+NMD)/(Nunchange+Nchange)×100%. Table I

summarizes those three errors for each detector. From Table I,

it can be seen that the proposed detector produces the lowest

total error rate of 0.86%.

V. CONCLUSION

In this paper, we proposed a novel change detection algo-

rithm using statistical features of the divisive normalization-

based image representation. Compared to existing detectors

with higher-order statistics, the proposed method exhibits lower

computational complexity with better change detection perfor-

mance in terms of total error rate.
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