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ABSTRACT

In this work, we propose a novel framework for automatic fin-

ger detection and hand posture recognition, based mainly on

depth information. Our method locates apex–shaped struc-

tures in a hand contour and deals efficiently with the chal-

lenging problem of partially merged fingers. Hand posture

recognition is achieved using Fourier Descriptors of the con-

tour, while global information about the fingers helps reduc-

ing the size of the search space. Our experiments on a dataset

obtained from a Kinect device confirm the high recognition

accuracy of our approach.

Index Terms— hand detection, finger detection, depth

camera.

1. INTRODUCTION

Hand gesture recognition is gradually becoming popular as a

means of Human Computer Interaction (HCI). The release of

Kinect TM, along with an easily adaptable Software Develop-

ment Kit (SDK), made the possible applications grow tremen-

dously and become a basic HCI part of many products. Ad-

ditionally to standard 2D video, Kinect offers depth informa-

tion, which provides more complete information about the 3D

world and helps solving some hard problems, such as varying

lighting or cluttered background. However, gesture recog-

nition is still an interesting and challenging problem, since

some assumptions are still necessary, even with the use of

depth information.

In this work, we focus on recognition of hand postures,

i.e. gestures where information lies only on the shape of the

still hand, regardless of its position. We show that local fea-

tures, such as Fourier Descriptors of a palm’s contour can

provide very high recognition results for a limited number of

simple postures. However, global information, based on the

number, shape and relative position of fingers, is probably the

most critical for posture recognition, while it is also neces-

sary for more advanced tasks. Specifically, we evaluate some

purely global features of the fingers, that provide high recog-

nition results, too. Motivated by the above, we also propose

an automated method for reliable finger detection and show

that we can significantly improve the recognition accuracy of

local feature methods, through search space reduction based

on the number of fingers.

Fig. 1. General structure of our proposed system. Finger

detection is optional, to improve recognition results through

search space reduction (as described in Sec. 3.3.2).

(a) (b) (c)

Fig. 2. Three of the 10 different hand postures used in [5] and

in our experiments. One can observe the necessity of using

depth under highly correlated background (e.g. in (b,c)).

The remaining of this paper is organized as follows. In

Sec. 2 we provide a short overview of some recent approaches

which also use depth information for hand posture recogni-

tion. In Sec. 3 we present in detail our approach for finger

detection and hand posture recognition, followed by our ex-

perimental results in Sec. 4. Finally, Sec. 5 concludes this

work and addresses our plans for the future.

2. RELATED WORK

In a very recent work, Kulshreshth et al. [1] used Fourier

Descriptors to process data from a Kinect system and recog-

nized the number of fingers in the palm with 90% accuracy.

Bagdanov et al. [2] classified a palm as either open or closed,

using SURF features [3] and a non-linear Support Vector

Machine, reporting 87.8% accuracy. Kurakin et al. [4] per-

formed recognition of 12 dynamic American Sign Language

(ASL) signs, using both shape and motion features.

Recently, some other approaches based on global features

and hand models appeared as well. Keskin et al. [6, 7] fit a 3D

skeleton to hand points, achieving almost perfect recognition

(99.9%) for the 10 ASL digits on synthetic and real datasets.

Billiet et al. [8] learned a hand model with 9 Degrees of Free-
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Fig. 3. (a) Binary mask after depth thresholding. (b) Corre-

sponding histogram of depth values. Note arm pixels (small

depth values) and noisy part (big depth values). (c) Resulting

hand and Minimum Enclosing Ellipsoid after applying Otsu’s

segmentation. (d) The signal of hand widths, widths(n). (e)

Final cutting point, (vertical red line). The upper and the

lower signals are shown slightly shifted for clarity.

dom, describing each finger as stretched or closed, and recog-

nized 8 postures. Oikonomidis et al. [9] tracked the 3D posi-

tion, orientation and full articulation of a human hand, based

on Particle Swarm Optimization and managed to control com-

putational complexity by utilizing GPUs.

The works of Ren et al. [5] and Doliotis et al. [10] are

the most relevant to our work. Doliotis et al. [10] performed

hand–palm separation from Kinect 3D data and then used the

Chamfer distance [11] to match real postures to 82, 560 syn-

thetic hand shapes. In our approach, we use a slightly mod-

ified version of their method for hand–palm separation. Ren

et al. [5] required the user to wear a black bracelet on the ges-

turing hand’s wrist, for easier hand–palm separation, and per-

formed finger detection using a distance-based profile of the

palm and shape decomposition. The same authors proposed

Finger-Earth Mover’s Distance (FEMD) to perform posture

recognition.

In this work we use the same dataset as in [5], but we

avoid the use of a black bracelet, since it might be restric-

tive in certain cases (e.g. What if the user loses the black

bracelet?). For that reason, we restrict the use of pixel lu-

minance values to detect face location during initialization,

and we only use depth information for all the other tasks,

i.e. hand detection, segmentation and representation. More-

over, we propose a method for automated finger detection,

which is much faster than the method presented in [5] and

provides very accurate results. Although our experimental re-

sults are significantly better than those reported in [5], we still

believe that full (Y,Cb, Cr) information can further improve

and make even more robust hand detection, and we plan to

address this issue in future work, using a more appropriate

dataset.

(a) (b) (c) (d)

Fig. 4. (a) Hand M0 and the maximum inscribed circle. (b)

The estimated palm Mpalm, after morphological opening. (c)

Subtraction of the two masks M0 − Mpalm. (d) Resulting

mask Mfingers with candidate finger components.

3. OUR APPROACH

The general structure of our method is shown in Fig. 1. The

initialization step involves periodic applications of the Viola–

Jones face detector [12] on the luminance component of an

image; we assume this is always possible when the user first

appears in the scene. When a user is eventually detected, we

compute the average depth of the face region, Tf . Kinect’s

depth values typically have a range of [0, 2047], with lower

values denoting distances closer to the camera. As a result,

Tf is the maximum depth that a hand may appear, assuming

it is always closer to the camera, as in Fig. 2.

3.1. Hand detection

In order to locate the gesturing arm, we apply depth thresh-

olding, keeping pixels with depth d < Tf − T0, where T0 is

a small value that typically represents the minimum distance

from the face plane to the waving hand - we found out that a

value of T0 = 100 is suitable for our dataset. Subsequently,

we perform Connected Component Analysis (CCA) and keep

the biggest component as the candidate arm. Since depth

thresholding may actually not perform a perfect segmentation

(Fig. 3), we further apply Otsu’s segmentation algorithm [13]

on the final component to clean it from any background noise.

Finally, similar to [10], we compute the Minimum Enclosing

Ellipsoid (MEE) [14, 15] to find the elongation axis and rotate

the arm in a horizontal position, such that the palm is always

at the right side, as shown on Fig. 3-e.

In the following, let’s assume Cartesian coordinate sys-

tem, with the (0, 0) point in the lower-left corner of each

image. For hand–palm separation, restricting ourselves in

the bounding box of the arm, we scan all x-positions of pix-

els that belong to the largest component and track the pixels

that have the minimum (low(x)) and maximum (upp(x)) y-

coordinates. These two sequences form two 1D-signals, as

shown in Fig. 3-e. Subtracting these two signals produces

the signal of widths widths(x) (Fig. 3-d). We observe that

the arm–palm separating point, (x), can be located at the lo-

cal minimum of widths(x) that is closest to the global maxi-

mum. The final separation result is a mask M0 containing the

palm, as shown in Fig. 4-a.

3.2. Finger detection

For finger detection, we first estimate the palm’s radius, Rp,

by solving for the Maximum Inscribed Circle [16] (Fig. 4-
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Fig. 5. The resulting signal r(n) and the FAIs (shown as red

squares) found by the method of [17]. Note that low-height

apexes can be easily rejected.

a). We then apply morphological image opening on the mask

M0 with a disk of radius Rdisk = 0.5 · Rp, in order to keep

only the palm Mpalm (Fig. 4-b). Subtracting Mpalm from M0

keeps mainly the fingers (Fig. 4-c), while we remove small,

noise-like components in the mask by additional morpholog-

ical opening with a smaller structuring element which finally

results in the mask Mfingers (Fig. 4-d).

While this processing is simple and fast, two problems

may appear:

1. False Fingers. Some components may survive the pre-

processing step because they are large enough and not

because they have a valid finger shape.

2. Merged Fingers. Some fingers may appear as one com-

ponent due to viewpoint or to device artifacts.

To alleviate these problems, we propose a novel method

for finger detection, which first detects candidate fingers

and then uses the mask Mfingers to confirm the validity of

the results. Similar to [5], we find the contour coordinates

{x(n), y(n)} of M0 and then form the signal of radial dis-

tances, r(n):

r(n) = ((x(n)− cx)
2 + (y(n)− yc)

2)/Rp (1)

where (cx, cy) denote the centroid coordinates of Mpalm.

As we see in Fig. 5, the signal r(n) presents apex–shaped

lobes around finger areas. This property was also observed

by Ren et al. [5], who used near-convex hand decomposition

[18], obtaining accurate finger detection results, but at a high

computational cost. In our work, we propose a much simpler

method, based on the method presented in [17] for motion

analysis. This algorithm forms teams of two minima and one

maximum and tries to combine neighbouring teams, in or-

der to detect apex-shaped parts, called Full Action Instances

(FAI), in 1D signals; each FAI is roughly a mountain peak be-

tween two valleys. In our approach, we use this algorithm for

finger detection, since fingers resemble FAIs. After the initial

FAI detection (Fig. 5), we reject small FAIs based on a min-

imum apex height, Th, to obtain the final candidate fingers.

This process removes false fingers from the mask Mfingers,

since it keeps only apex-shaped components of the hand. In

our experiments, we used Th = 0.3 · Rp, i.e. a finger is at

least a third the radius of the palm.

Fig. 6. An example of our method for apex detection and FAI

splitting, dealing with two merged fingers. When area E is

larger than a threshold Ta, an apex is detected in signal r(n).

In order to deal with the problem of merged fingers, we

propose a novel algorithm that detects apexes in 1D signals,

which we then apply on each FAI. Our main observation is

that an apex can be approximated by a triangle, with area E,

as shown in Fig 6. Our algorithm begins with the left valley

point of the FAI and scans local minima, computing E, the

area between the signal (blue curve) and the line connecting

the left valley point to the local minimum under test (red line).

Depending on the relative position of the two curves, some

areas have positive sign (signal lies above the line) while oth-

ers have a negative sign (signal lies below the line). When

E > Ta, a significant apex is detected at the point of max-

imum height. When E < 0, we understand that the signal

forms a valley, which signals our algorithm to backtrack to

the last local minimum and restart the whole process from

there. Additionally, false apexes can be rejected based on a

minimum length of the two sides around the apex, as well

as a maximum ratio of the longest over the shortest side. In

this way, although originally we assumed one apex per FAI,

we can now detect additional apexes and thus disambiguate

merged fingers. In our experiments we normalized r(n) to 1

and then used Ta = 0.1.

At the end of the above process, almost all of the false

positives have been eliminated. Accuracy can be further

improved, by using the connected components in the mask

Mfingers for final verification. Since each FAI, with its cor-

responding apex, left and right sides and valleys, should be

restricted to a single mask component, we can choose the

midpoints at each side of the apex and connect them with a

line. If the apex corresponds to a real finger, then most of the

points on the line (ideally all of them) will belong to the same

component, without intersecting background pixels or other

components.

3.3. Hand posture recognition

3.3.1. Recognition based on Shape Descriptors

Our first method for posture recognition uses directly the

palm’s mask, M0 (Sec. 3.1). More specifically, we use the
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palm contour coordinates, {x(n), y(n)}, form the complex

1D-signal z(n) = x(n) + jy(n), take its Discrete Fourier

Transform (DFT) Fk =
∑N−1

n=0
z(n)e−j2πkn/N and keep

only the 2P coefficients corresponding to k ∈ [−P, P ]−{0}.

Finally, we keep only the magnitudes |Fk|, normalized by

|F0|. This representation, known as Fourier Descriptors

(FD), is invariant to translation, rotation, scaling and choice

of initial boundary point [19]. Instead of z(n), Kulshreshth

et al. [1] used the signal r(n) (Eq. 1). Its main advantage is

that we now need only half the number of coefficients, since

DFT is symmetric for real signals. For completeness, we con-

sidered and evaluated both approaches, using P = 8, since

we didn’t notice any significant improvement with larger val-

ues. Finally, posture recognition is done using a standard

Nearest Neighbour (NN) classifier.

3.3.2. Recognition based on Finger Information

Information about the fingers is also valuable for the recog-

nition process and can be used in two different ways. First,

to reduce the search space size, since we can consider only

those training postures with the same number of fingers. We

named these approaches FD∗(z) and FD∗(r), correspond-

ing to the previously mentioned FD(z) and FD(r). Second,

we propose some global features to describe a posture, based

only on the fingers (as derived from the FAI analysis). More

specifically, we describe a finger using its size characteristics

(height, width) and its relative distance from the leftmost fin-

ger. Finally, we concatenate all this information for multiple

fingers into one feature vector and perform Nearest Neigh-

bour classification. We refer to this finger-characteristics-only

method as “Fingers” in Table 1.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

For our experiments we used the dataset of [5], which con-

tains an alphabet of 10 different postures, with 10 examples

from 10 different persons, i.e. 1000 postures in total. As

we stated above, we used luminance only for face detection

and depth information for hand and finger detection. For our

recognition experiments, we used 10-fold cross-validation in

a user–independent mode, i.e. at each round we used 900 pos-

tures (9 people × 10 categories × 10 examples) for training

and the rest 100 examples for testing. Our method was imple-

mented in a Matlab environment, executing on a standard PC

system.

4.2. Hand–palm separation and finger segmentation

Hand–palm separation was visually confirmed, with results of

similar quality to the example shown in Fig. 3-e. The only ex-

ception was one case (out of 1000) where the resulting mask

missed the thumb and placed the hand–palm separation line

incorrectly, in the middle of the palm. Regarding finger de-

tection, we considered as correct cases those where the ex-

Method Rec. Accuracy (%)

Ren et al. [5] 93.9%
FD(z) 98.5%
FD(r) 97.1%
FD∗(z) 99.5%
FD∗(r) 99.1%
Fingers 96.3%

Table 1. Recognition accuracy for various methods. The

FD∗ methods use Fourier Descriptors and achieve search

space reduction based on the number of fingers.

pected number of fingers - known a priori by the posture class

- was returned, with 996 correct results out of 1000 postures.

A more detailed evaluation would consider additional finger

information, but we didn’t have any reference for that.

4.3. Hand posture recognition

As we see in Table 1, z(n) is a better choice than r(n) as the

basic signal in the Fourier Descriptor representation. Zhang

and Lu [20] actually reported the opposite result, but they

worked on highly complicated artificial shapes, while we cur-

rently consider only hand shapes.

While the results of FD(z) and FD(r) are very good, we

also experimented by considering only training postures with

the same number of fingers as those detected in the query

posture. This reduction gave higher posture recognition ac-

curacies, mostly due to the very high accuracy on the number

of fingers detected (996/1000), as shown by lines FD∗(z),
FD∗(r) in Table 1. Finally, we also evaluated our global fea-

tures based on the fingers characteristics (“Fingers”), which

proved better than [5] but not as good as the four FD-based

methods mentioned previously. Regarding computational

complexity, 1 search with FD(z) required 136.1 µs and

80.5 µs with FD∗(z). Please note that, these figures include

significant computational overhead by the environment, and

we normally expect optimized implementations to run much

faster on a commercial device.

Overall, our results are better than those in [5] and sug-

gest that local features, such as Fourier Descriptors, can be

very informative and sufficient for hand posture recognition,

at least for certain vocabularies. On the other hand, global

features, such as the number of fingers, can be used to im-

prove the results through search space reduction.

5. CONCLUSIONS

In this work we proposed a novel approach for finger detec-

tion and hand posture recognition. Our experiments achieved

state-of-the-art results on a challenging dataset, using simple

shape features. Our goals for future work include integration

of our method in a real-time system, experiments on other

datasets and fusion of depth and color information.
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