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ABSTRACT

This paper presents a new method for calculating the low-rank ap-
proximation of a highly incomplete trajectory matrix for subspace
video stabilization. We extend moving factorization proposed in
[1], which is a streamable method based on least squares. By uti-
lizing sparse representation of trajectories, the proposed factoriza-
tion method is more accurate while still streamable. We test our
sparse moving factorization on synthetic data as well as real videos.
Experiments on synthetic sequence demonstrate the numerical prop-
erties of our method, and stabilized videos show that our method
outperforms moving factorization for subspace video stabilization.
In addition, our results are also better than the ones from some other
state-of-the-art video stabilization methods.

Index Terms— Sparse Representation, Matrix Factorization,
Video Stabilization

1. INTRODUCTION

Taking satisfactory video sequences with hand-held devices is dif-
ficult for amateur recorders. One of the main differences between
videos shot by the professional and the non-professional is the cam-
era motion. In film industry and other professional fields, camera-
men use dollies or steadicams to get stable motion. These hardware
solutions are not practical for ordinary users, so video stabilization
software is usually used in post processing stage.

Previous video stabilization methods first estimate and smooth
2D camera motion [2, 3, 4] or 3D camera motion [5, 6], then syn-
thesize a stabilized video using correspondence between raw and
smoothed motion. The 2D methods model camera motion between
consecutive frames as affine transformation or homography. Gen-
erally, 2D methods are faster and more robust than 3D methods.
However, they often fail in scenes with parallax for lack of model
flexibility. In contrary, the 3D methods can handle parallax and pro-
duce visual plausible results, but they are rarely used in commercial
softwares for unreliability under various conditions such as motion
blur, large moving object, camera zoom and rolling shutter. On an-
other hand, the computational complexity of recovering 3D informa-
tion is unacceptable. As reported in [5], structure-from-motion using
Voodoo Tracker 1 takes several hours for a short video.

1http://www.digilab.uni-hannover.de/docs/manual.
html

Recently, both 2D and 3D methods have been greatly improved.
In [7], S. Liu et al. use bundled camera paths, which are more flex-
ible than a single global camera path. They smooth the estimated
camera paths using space-time optimization and warp frames with
spatially-variant homographies. Wang et al. [8] represent each tra-
jectory as a Bézier curve. They formulate video stabilization as a
spatial-temporal optimization problem that finds smooth trajectories
as well as preserves offsets of neighboring curves. Goldstein and
Fattal [9] avoid 3D reconstruction by using the ‘epipolar transfer’
technique to construct and smooth virtual trajectories.

In this work, we focus on subspace video stabilization proposed
in [1], where Liu et al. develop a streamable method named moving
factorization to factor a highly incomplete trajectory matrix. They
obtain a stable trajectory matrix by smoothing and projecting the fac-
tored eigen-trajectories back to original 2D coordinate space. Differ-
ently, we novelly factor new trajectories from calculated results by
utilizing sparse representation of trajectories. Compared with mov-
ing factorization, our method extends trajectories more accurately,
which is beneficial to the quality of stabilized videos.

In the rest of this paper, we first revisit subspace video stabiliza-
tion to give a better understanding of the basic concept. Then we
introduce the sparse representation of trajectories and describe the
proposed algorithm. At last, we give experimental results on syn-
thetic data and real videos to validate our method.

2. SUBSPACE VIDEO STABILIZATION

In subspace video stabilization, a set of feature points are tracked
through a video. The trajectories of these points are assembled into
a trajectory matrix M:

M2t×f =


x11 · · · x1f

...
. . .

...
xt1 · · · xtf

 , (1)

where t is the number of feature trajectories tracked across f frames,
xij is the i-th trajectory’s position in j-th frame. As shown in Fig 1,
this matrix is highly incomplete because trajectories will appear and
disappear in a video. Liu et al. model M using a rank r subspace
constraint:

M2t×f = W� C2t×rEr×f , (2)

where W is a binary mask with 0 for missing data, 1 for existing data,
and � indicates the element-wise multiplication. Then the stable
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Fig. 1. A typical trajectory matrix from real video. About 84%
data in this matrix are missing. Blue: tracked trajectories. Green:
extended segments. Red: low-pass filter window of w frames. Since
there are much more trajectories than frames, we scale the y-axis for
visualization.

trajectory matrix M̃ is obtained by adopting a gaussian kernel K to
E:

M̃ = W� (CE)K = W� C(EK) = W� CẼ, (3)

and stabilized frames are synthesized using content-preserving
warps [5] with the correspondence between M and M̃.

In [1], Liu et al. use the moving factorization technique to factor
M into coefficient matrix C and eigen-trajectories E. They present
that to support the low-pass filter, the factorization needs to be able to
extend each trajectory forwards and backwards in time by the radius
of the smoothing kernel. In order to get M̃, M is smoothed by pro-
jecting filtered eigen-trajectories back to the original 2D coordinate
space as in (3). It is equivalent to filtering the points near the start
and the end of original trajectories with both tracked and extended
neighbors. So the factorization should be accurate for not only the
tracked trajectories but also the extended segments. To achieve this
goal, we present our sparse moving factorization in the next section,
which extends points more accurately as described in Section 4.1.

3. SPARSE MOVING FACTORIZATION

3.1. Sparse representation of trajectories

Sparse representation is based on the idea that a vector can be rep-
resented as a sparse linear combination of a set of basis vectors. For
motion segmentation, Elhamifar et al. represent each trajectory as
a sparse linear combination of the other trajectories from the same
subspace [10]. In subspace video stabilization, we only consider the
trajectories of static background, which belong to a single subspace.
Thus, we can represent a trajectory y as:

y =

n∑
i=1

aixi, (4)

where xi is one of the other n trajectories that cover y in time. As
reported in [11], one can recover the K-sparse (have no more than
K non-zero values) vector a = [a1 · · · an]> if K . m/log(D/m).
And a is usually obtained by solving the Lasso problem:

min‖y − Xa‖22 + λ‖a‖1. (5)
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Fig. 2. Projection error under different sparsity level K. Blue: pro-
jection error by representing a trajectory as a sparse linear combi-
nation of all the other trajectories as in (4). Red: projection error
by representing a new trajectory as a sparse linear combination of
factored trajectories as in (9).
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Fig. 3. Moving factorization via sparse representation. To compute
the factorization for the next window forward δ frames, we fix C0,
C1, E0 and E1, then compute C2 from C1 by utilizing sparse repre-
sentation of trajectories.

In practice, we investigate this property in a filter window of w
frames (we set w to 50). Here, the ambient space dimension D

equals to the trajectory number n in the window, and the measure-
ment numberm = 2r if trajectories are projected onto lower dimen-
sional subspace as in (2). In real sequences, D is usually larger than
50. If we project the trajectory matrix onto a rank 9 subspace as in
[1], a will be at least 18/log(50/18) ≈ 18-sparse.

To validate the sparse representation of trajectories, sparsity
level K is altered by truncating a except for the entries that have
the K largest absolute values. Then we investigate how the average
projection error ‖y − Xa‖2 varies along with the change of K. Fig
2 shows that the error decreases as K increases, and converges to
0.062 when K=17. So in our application, the sparse representation
of trajectories is available both theoretically and experimentally.

3.2. Moving factorization via sparse representation

As the same with moving factorization, we start our algorithm by
assembling k trajectories that span the firstw frames into a complete
matrix M0. This matrix can be factored as follows:

M0
2k×w = C2k×rEr×w, (6)

where C and E are obtained by truncating the output of Singular
Value Decomposition (SVD) [12] to the rows, columns, and values
corresponding to the largest r singular values, and then distributing
the square root of singular value to the left and right orthogonal ma-
trices.

Now we move the factorization window forward δ frames (we
set δ to 5) to reach the next complete matrix M1. As shown in Fig
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3, X11 is shared by M0 and M1 after matrix permutation. Since
X11 = C1E1 is already known when M0 is factored, we keep this
value fixed and factor M1 as:

M1 =

[
X11 X12

X21 X22

]
=

[
C1

C2

] [
E1 E2

]
. (7)

In moving factorizaiton, Liu et al. estimate C2 by minimizing the
projection error ‖C2E1 − X21‖2F :

Different from their method, our algorithm calculates C2 from
C1 by utilizing the sparse representation of trajectories. We write
X1([X11,X12]) and X2([X21,X22]) as:

X1 =


x1

1

...
x1

m


2m×w

and X2 =


x2

1

...
x2

n


2n×w

, (8)

where x1
j is a 2×w matrix of a trajectory factored in M0 while x2

i

belongs to a new trajectory in M1. Since n is much smaller than m,
x2

i can be represented as:

x2
i =

m∑
j=1

aijx
1
j , (9)

which is a good approximation to (4) as shown in Fig 2.
Then we transfer (9) to C1 and C2 because they are the linear

projection of X1 and X2 on the same basis [E1,E2]:

c2i =

m∑
j=1

aijc
1
j . (10)

Therefore, C2 can be computed from C1 once every sparse vector
ai = [ai1 · · · aim]> is given.

In order to calculate {ai}i=1···n, we project M1 onto the first-r
principal subspace by SVD as:

M1
2(m+n)×w = U2(m+n)×rΣr×rV>r×w, (11)

and recover the sparse representation of trajectories on U. Since U =[
U1

U2

]
also represents

[
X1

X2

]
in lower dimensional subspace, ai

can be obtained by solving

min‖ū2
i − Ū1

ai‖22 + λ‖ai‖1, (12)

where ū2
i is a 2r× 1 vector reshaped from the 2× r matrix u2

i , and
Ū1

=
[
ū1

1 · · · ū1
m

]
.

Finally, we construct C2 by computing {c2i }i=1···n using (10),
and solve for E2 as the same in moving factorization:

E2 =

[ C1

C2

]> [
C1

C2

]−1 [
C1

C2

]> [
X12

X22

]
. (13)

In this way, we can get the factorization of M in (2) by moving the
factorization window forward until all the trajectories have been pro-
cessed. For the trajectories that are too short to be included in a
window, their coefficients are computed by minimizing the projec-
tion error. Before factoring every window, outliers are detected and
rejected using the same method in [1].

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7
x 10

4

P
o
in
t
n
u
m
b
er

 

 

MF
SMF

Projection error

(a)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

P
o
in
t
n
u
m
b
er

 

 

MF
SMF

Projection error

(b)

Fig. 4. Comparison on synthesized data. (a) The bar graph of in-
frame point number by projection error. (b) The bar graph of ex-
tended point number by projection error.

4. EXPERIMENTAL RESULTS

4.1. Synthetic data

This section aims at obtaining a better understanding of why our
method outperforms moving factorization for subspace video stabi-
lization. We randomly generated 500 points within a 100×100×100

cube, and synthesized a sequence of 300 frames (the size of these
frames are 600 × 600) by a moving perspective camera. The fo-
cal length of the camera was set to 500 and rotation angles were set
from −π/4 to +π/4 randomly. Then we added gaussian noise with
σ = 3 and µ = 0 to every projected point in frames.

After factoring the synthesized trajectory matrix by moving fac-
torization (MF) and sparse moving factorization (SMF), we counted
point number according to the projection error of every point. Since
our algorithm doesn’t explicitly minimize projection error when
calculates coefficient matrix, it performs slightly worse than mov-
ing factorization on the in-frame points. Fig 4(a) shows that there
are more points with projection error larger than 0.1 pixels in our
method. But this difference is negligible — the average projection
error is 0.0637 pixels by moving factorization and 0.0984 pixels
by our method. They are both accurate enough for subspace video
stabilization as reported in [1].

However, our method outperforms moving factorization greatly
on extended points. As shown in Fig 4(b), most extended points
in our method have projection error less than 1 pixels while mov-
ing factorization generates more points with larger error. The av-
erage projection error of extended points is 0.5089 by our method,
which is about half of the error by moving factorization. It is because
our method better preserves the relationship between trajectories by
adopting the sparse representation of trajectories into factorization.
As discussed in Section 2, accurately extended points are crucial to
smoothing the trajectory matrix.

4.2. Video Stabilization

In this section, we test our method on video stabilization with 12
video sequences shown in Fig 5. These videos cover various scene
types including camera zoom, dynamic scene, large parallax, large
moving object, etc. We quantatitively compare the proposed method
and our implementation of moving factorization in subspace video
stabilization. Additionally, subjective comparisons with other meth-
ods are given by snapshots and online supplementary video.
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Fig. 5. Snapshots of the 12 video sequences used in experiments.
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Fig. 6. Comparisons with subspace video stabilization. (a) Cropping
ratio. (b) SSIM between consecutive frames.

For quantitative comparisons, we use two objective metrics:
Cropping Since the scope of every synthesized frame is differ-

ent, videos will have blank areas after stabilization. Matsushita et
al. propose motion inpainting to fill the blank [2], but their method
is rarely used in real applications for complexity and robustness is-
sues. Most state-of-the-art methods unify frames’ size by cropping
frames to their overlapping region. The cropping is computed as the
ratio of cropped frames’ size to the original. A higher cropping ratio
means the video content is better preserved.

SSIM Although some sophisticated metrics have been proposed
to measure the quality of stabilized videos [7, 13], similarity be-
tween consecutive frames by PSNR is still popular for its simplicity
[14, 15]. In our experiments, we measure the similarity of consecu-
tive frames by SSIM [16], which is more advanced than PSNR and
still easy to use. The more stable a video is the more similar its con-
secutive frames are, and less temporal distortions between frames
will also increase the SSIM value. So satisfactory stabilized videos
have high SSIM values.

We set the parameters of the gaussian kernel to σ=24 and w=50
when smooth the eigen-trajectories factored by moving factorization
and our method. The two metrics are used in sequence-by-sequence
comparisons on the videos synthesized by content-preserving warps.
As Fig 6 shows, our method preserves more image content than mov-
ing factorization, and the higher SSIM values indicate that stabilized
videos by our method are more stable and less distorted.

Then we compare our stabilized videos with some public re-
sults. In Fig 7(a), we successfully stabilize a failure case of subspace
video stabilization [1]. As shown in Fig 7(b), much more video con-

(a)

(b)

(c)

Fig. 7. Comparisons with public results. Left: input frames. Mid-
dle: stabilized frames from (a) subspace video stabilization, (b) L1
optimal camera path and (b) epipolar video stabilization. Right: our
stabilized frames.

tent is preserved in our method than L1 optimal camera path [4]. In
Fig 7(c), the light pole in the result of epipolar video stabilization
[9] is distorted while ours is better. Note that our method preserves
more video content than all of the three competitors. Please see the
supplementary video (http://youtu.be/ljCXEqv_1rg) for
more comparisons.

4.3. Performance

We implemented the proposed algorithm in C++ and did all the
experiments on a MacBook Air with 1.7GHz Intel Core i5 CPU
and 4GB RAM. The minimization in (12) is solved by Homotopy
solver [17], and Lanczos based algorithm from SVDLIBC2 is used
in (6) and (11). In video stabilization, we track feature points using
KLT tracker in OpenCV3, which achieves 9 fps when tracks about
500 points in a 640×360 frame. The sparse moving factorization
achieves 35 fps when factor tracked trajectory matrix, and our im-
plementation of content-preserving warps takes about 40 ms to warp
a frame. Overall, our video stabilization system runs at about 5 fps.

5. CONCLUSIONS

In this paper we have proposed a factorization method that outper-
forms moving factorization for subspace video stabilization. We use
sparse representation to model the relationship between trajectories
and novelly adopt this model into factorization. Our method fol-
lows the streamable framework of moving factorization, but it better
extends the trajectories by the radius of the filter window. Conse-
quently, our stabilization method generates more visual plausible re-
sults than the original subspace video stabilization and some other
existing methods.

2http://tedlab.mit.edu/˜dr/SVDLIBC/
3http://opencv.org
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