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ABSTRACT

Consider the max-min problem for an uplink SIMO heterogeneous
network, where the base stations (BS) are coordinated dynamically
for joint reception under some backhaul overhead constraints. We
formulate this problem in the perspective of joint power allocation,
BS assignment and beamformer design, and develop an efficient al-
gorithm based on alternating optimization. In particular, we transfer
the joint BS assignment and beamformer design subproblem into a
group LASSO problem by applying the alternating direction method
of multipliers (ADMM). Consequently, the problem is solved in a
partially distributed manner and in each iteration a simple closed-
form solution is derived. Numerical simulations demonstrate the ef-
fectiveness and efficiency of the proposed algorithm.

Index Terms— SIMO heterogeneous network, Max-min, Base
station assignment, Beamformer, Alternating direction method

1. INTRODUCTION

In a heterogeneous network (HetNet), the user may be covered by
multiple base stations (BS) simultaneously. BS assignment (i.e., as-
sociating users with BSs dynamically based on, e.g., the channel
state information (CSI) and interference) is a promising approach to
further improve the network performance in interference mitigation
or congestion control [1, 2]. Motivated by this observation, we con-
sider in this paper solving the max-min problem for the uplink trans-
mission in a SIMO HetNet by the means of joint power allocation,
BS assignment and beamformer design.

Actually, in conventional wireless networks, the max-min prob-
lem, since can guarantee fairness among users, has been intensively
researched during the past decades. However, so far most works,
whether analyzing the complexity status [3, 4] or designing the al-
gorithms [4, 5, 6, 7, 8], are based on the assumption that the BS-user
assignment is known and fixed. The situation does not change much
as the data communication in a HetNet is concerned, where the BSs
can be coordinated for joint transmission or reception. One pop-
ular cooperative strategy is the partial coordinated multiple points
(CoMP) transmission [9, 10]. In this strategy, multiple BSs form a
virtual BS and perform joint processing (JP) by sharing the user da-
ta via the backhaul links, while coordinated beamforming (CB) is
performed among these virtual BSs to mitigate interference. Unfor-
tunately, most related works are still based on fixed BS assignmen-
t. They either simply assume the BS-user association is known, or
form the virtual BS (also called as the BS cluster) greedily by an
exhaustive search procedure [9, 10, 11, 12].

A few recent works integrate BS assignment into the network
optimization process for further performance improvement [13, 14,
15, 16, 17]. For example, [15] considers maximizing the sum rate for
an uplink HetNet by joint BS assignment and beamformer design,

under the constraint that each user can be served by only one BS. On
the other hand, [16] and [17] extend the BS assignment problem into
the partial CoMP downlink transmission. They both adopt the sum
rate utility function but with different sparse penalty terms to balance
the overall spectrum efficiency and, e.g., the size of each virtual BS
[16], or the total number of active BSs [17]. WMMSE framework is
used to solve these problems. In addition, [17] also consider balanc-
ing the transmit power and the active BSs number under some QoS
constraints. This work further investigate the distributed implemen-
tation of the algorithm. It applies a two-block alternating direction
method of multipliers (ADMM) to reformulate the QoS constraints
and then design an efficient distributed algorithm.

[Relation to prior work] Different from the works maximizing
the sum rate in the downlink transmission (e.g., [16, 17]), here we
concentrate on the max-min problem for an uplink SIMO HetNet.
Note although [15] also considers the uplink scenario, it adopts the
sum rate utility function and assumes no BS clustering. In this pa-
per, the BSs adaptively perform coordinated reception based on the
instantaneous CSI and the constrained backhaul overhead. To con-
trol the backhaul overhead in the uplink scenario, we explore the
sparsity of the receive beamformer, while most existing works (e.g.,
[16, 17]) concentrate on the sparsity of the transmit beamformer in
downlink applications. Moreover, inspired by the work in [17], we
consider the distributed implementation issues. Based on a different
problem formulation, we apply the two-block ADMM and transfer
the problem to a group LASSO problem. As a consequence, the w-
hole problem is solved efficiently (with closed-form solutions) in a
partially distributed manner.

2. SYSTEM MODEL

Consider the uplink transmission in a SIMO HetNet consisting ofM
users and K BSs. Each user is equipped with a single antenna while
each BS with T > 1 antennas. For the sake of simplicity, we assume
both the channel vectors and the receive beamformers are real in this
paper. Let hkm ∈ RT×1 denote the channel vector between user m
and BS k, and wkm ∈ RT×1 the receive beamformer used by BS k
for user m, k = 1, 2, ...,K, m = 1, 2, ...,M . Define vectors p̄ =
[p̄1, p̄2, ..., p̄M ]T ∈ RM×1 and p = [p1, p2, ..., pM ]T ∈ RM×1 as
the system power budget vector and the actual transmit power vector,
with p̄m and pm the power budget and the actual transmit power of
user m, m = 1, 2, ...,M , respectively. Let σ2 denote the power of
the additive white Gaussian noise at the BSs.

Assume the BSs perform the coordinated reception and all the
BSs can potentially join the virtual BS for any user, then the coor-
dinated receive beamformer for user m and the associated channel,
denoted by wm and hm ∈ RKT×1 respectively, can be defined as

wm = [wT
1,m, ...,w

T
K,m]T , hm = [hT1,m, ...,h

T
K,m]T , ∀m. (1)
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Then the SINR of user m is calculated by

SINRm =
pmwT

mhmhTmwm

wT
m(σ2I +

∑
n 6=m pnhnhTn )wm

, ∀m, (2)

To avoid heavy signaling overhead, we need to control the num-
ber of BSs in coordination. Note if BS k is not assigned to user m,
the corresponding receive beamformer wkm = 0. In other words,
wm is group sparse if only a small number of BSs are allowed to
perform coordinated reception for user m. Obviously, solving wm

determines the BS assignment and the receive beamformer for user
m simultaneously. Hence, the joint power allocation, BS assignment
and beamformer design problem can be expressed as

(P1) max
wm, pm

min
m

SINRm

s.t.
∑K

k=1
‖wkm‖2 ≤ β, 1Twm = 1,

0 ≤ pm ≤ p̄m, ∀m.

where β > 0 is the threshold for the l1,2-norm term
∑K
k=1 ‖wkm‖2.

This constraint is used to control the sparsity of wm.
Remark 1: A more popular way to address the sparse require-

ment for wm is putting the l1,2-norm term in the objective as a penal-
ty term (see, e.g., [16, 17]). However, in this paper we keep it in the
constraint region with a threshold of β to guarantee the convergence
of the algorithm based on alternating optimization.

Remark 2: The constraint 1Twm = 1 is used to avoid the trivial
solution wm = 0, since we plan to apply the SOCP reformulation
[7] to deal with the SINR constraints.

3. PROBLEM FORMULATION

In (P1), p and wm are coupled within the SINR terms. A popu-
lar method to solve this kind of problems is alternating optimization,
i.e., iteratively fixing one variable and solving another. In this frame-
work, (P1) can be separated into two subproblems. Fixing wm we
get the power allocation (PA) subproblem; fixing p we get the joint
BS assignment and beamformer design (BABF) subproblem.

We claim if the two subproblems can be globally solved in each
iteration, the algorithm based on alternating optimization converges
to a stationary solution (or a KKT point). The proof follows the same
line as that in [4], but with some small modifications since we have a
different model. It can be easily checked that if the l1,2-norm term is
in the objective, we will lose the degree of freedom of the Lagrangian
multiplier and then the KKT condition cannot be satisfied. Due to
the space limitation, we omit the detail of the proof here.

Since so far numerous centralized or distributed algorithms have
been proposed for the PA subproblem [18], we focus on solving the
BABF subproblem. Obviously, this subproblem can be further divid-
ed into M independent small problems of wm, represented as (P2)
with γ an auxiliary variable. Then (P2) can be solved by a bisection
procedure of feasibility checking.

(P2) max
wm,γ

γ

s.t. SINRm ≥ γ,∑K

k=1
‖wkm‖2 ≤ β, 1Twm = 1.

Without 1Twm = 1, we can apply the SOCP reformulation to
transfer (P2) to a convex problem and check the feasibility of (P2)
for γ directly. However, 1Twm = 1 is sensitive to the sign of wm,

so we need to pay attention to the sign of hTmwm in the SOCP refor-
mulation. To handle the sign problem, we first define two subsets for
wm, i.e., A+

m , {wm| hTmwm ≥ 0} and A−m , {wm| hTmwm <
0}, ∀m. Then we solve (P2) with fixed γ in A+

m and A−m separately
via the SOCP reformulation. If in any subset it is feasible, then (P2)
is feasible for γ. Since the procedures solving (P2) in A+

m and A−m
are exactly the same, we focus on how to solve it in A+

m.
In the procedure of feasibility checking, we move the l1,2-norm

term to the objective to force a group sparse solution, i.e.,

(P3) min
wm

∑K

k=1
‖wkm‖2

s.t. h̄Tm(pm, γ)wm ≥ ‖QT (p)wm‖2, 1Twm = 1.

where h̄m(pm, γ) =
√
pm(1 + γ−1)hm and Q(p)QT (p) =

H(p) with H(p) = σ2I +
∑M
n=1 pnhnhTn .

Remark 3: Solving (P3) is equivalent to checking the feasibility
of (P2) for γ in A+

m. When (P3) is feasible, we always get an opti-
mal objective value minimizing

∑K
k=1 ‖wkm‖2. Then we compare

this value with β. If it does not exceed β, (P2) is feasible for γ.
Otherwise, i.e., when (P3) is infeasible or feasible with an optimal
objective value greater than β, we make a double check in A−m.

Remark 4: Note without 1Twm = 1, (P3) is feasible for any γ
at wm = 0.

4. PARTIALLY DISTRIBUTED ALGORITHM

In practice, people prefer implementing the algorithm distributively,
i.e., with some necessary data exchange, each BS can decide by itself
whether to join the coordinated reception for a specific user or not.

The major obstacle to develop a distributed algorithm for (P3) is
the {wkm} blocks are coupled within the constraints. To overcome
it, we introduce two series of auxiliary variables um ∈ RKT×1 and
vm ∈ R(KT+1)×1, and define Vm(p, γ) = [h̄m(pm, γ), Q(p)] ∈
RKT×(KT+1), ∀m. Then (P3) is equivalent to

(P4) min
wm,vm,um

∑K

k=1
‖wkm‖2

s.t.
[
wm

vm

]
=

[
I

VT
m(p, γ)

]
um,

vm,1 ≥ ‖vm,−1‖2, 1Tum = 1.

with vm,1 = h̄Tm(pm, γ)um the first element of vm, and vm,−1 =
QT (p)um the remaining subvector of vm, or vm = [vm,1,v

T
m,−1]T .

Utilizing the method of augmented Lagrangian Minimization,
(P4) can be reformulated as

(P5) min
wm,vm,um,λm

Lcm(wm,vm,um,λm)

s.t. vm,1 ≥ ‖vm,−1‖2, 1Tum = 1.

where cm is the positive penalty parameter; λm , [λTm,1,λ
T
m,2]T

with λm,1 ∈ RKT×1, λm,2 ∈ R(KT+1)×1 the Lagrangian multipli-
ers corresponding to the constraints of wm = um, vm = VT

mum,
respectively. For the sake of conciseness, from now on we simply
use h̄m, Q and Vm to denote h̄m(pm, γ), Q(p) and Vm(p, γ)
when there is no ambiguity. The augmented Lagrangian function
Lcm(wm,vm,um,λm) is defined as,

Lcm(wm,vm,um,λm) =
∑K

k=1
‖wkm‖2

+ [λTm,1,λ
T
m,2]

[
wm − um

vm −VT
mum

]
+
cm
2

∥∥∥∥ wm − um
vm −VT

mum

∥∥∥∥2
2
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Dividing wm, vm and um into two blocks as {wm,vm} and
{um}, we can apply the following two-block ADMM framework to
solve (P5) efficiently [19].

[
w

(l+1)
m

v
(l+1)
m

]
= arg min{wm,vm} Lcm(wm,vm,u

(l)
m ,λ

(l)
m ),

u(l+1)
m = arg min{um} Lcm(w(l+1)

m ,v(l+1)
m ,um,λ

(l)
m ),

λ(l+1)
m =

[
λ

(l)
m,1

λ
(l)
m,2

]
+ cm

[
w

(l+1)
m − u

(l+1)
m

v
(l+1)
m −VT

mu
(l+1)
m

]
,

with l the ADMM iteration index.
The main advantage of ADMM is separating (P5) into two sim-

ple convex problems of {wm,um} and vm. Both can be solved ef-
ficiently (sometimes even distributively). Actually, a simple closed-
form solution can be derived for each problem.

4.1. Solution to the problem of {wm,vm}

Note the problem of {wm,vm} can be further decomposed into two
problems of wm and vm, since wm and vm are separable in both
objective and constraints.

The problem of wm is a group LASSO problem.

(P5w) min
wm

Lcm(wm,u
(l)
m ,v

(l)
m ,λ(l)

m )

Since the {wkm} blocks are completely separated in the objec-
tive, (P5w) can be divided into K independent problems of wkm,

min
wkm

‖wkm‖2 + λ
(l)T
km,1(wkm − u

(l)
km) +

cm
2
‖wkm − u

(l)
km‖

2
2

where λkm,1 and ukm ∈ RT×1 are defined similarly as wkm, de-
noting the kth blocks of λm,1 and um respectively. Using the first
order optimality condition for the optimal solution w

(l+1)
km , we have

−λ(l)
km,1 − cm(w

(l+1)
km − u

(l)
km) ∈ ∂‖w(l+1)

km ‖2, (3)

with ∂‖w(l+1)
km ‖2 the subgradient of the function ‖ · ‖2, defined as

∂‖wkm‖2 =


wkm

‖wkm‖2
, wkm 6= 0,

{g | ‖g‖2 ≤ 1,g ∈ RT×1}, wkm = 0.

(4)

Inserting eq.(4) into eq.(3), we can easily obtain

w
(l+1)
km =


0, if ‖cmu

(l)
km − λ

(l)
km,1‖2 ≤ 1,

cmu
(l)
km − λ

(l)
km,1

cm + δkm
, otherwise,

(5)

with δkm = (‖w(l+1)
km ‖2)−1 = (‖cmu

(l)
km − λ

(l)
km,1‖2 − 1)−1cm.

Remark 5: Due to the separable structure of (P5w), wkm can be
computed distributively in the BSs. That is, with the knowledge of
the current ukm, λkm,1 and cm, each BS can easily make a decision
for itself on whether to join the coordinated reception for user m or
not. If the answer is positive, the receive beamformer will be deter-
mined simultaneously, i.e., we jointly optimize the BS assignment
and the receive beamformer.

The problem of vm is expressed as

(P5v) min
vm

λ
(l)T
m,2 (vm −VT

mu(l)
m ) +

cm
2
‖vm −VT

mu(l)
m ‖22

s.t. vm,1 ≥ ‖vm,−1‖2.

The first optimality conditions for v
(l+1)
m are listed as follows,

λ
(l)
m,2,1 + cm(v

(l+1)
m,1 − h̄Tmu(l)

m )− µm = 0,

− λ
(l)
m,2,−1 − cm(v

(l+1)
m,−1 −QTu(l)

m ) ∈ µm∂‖v(l+1)
m,−1‖2,

0 ≤ µm ⊥ (v
(l+1)
m,1 − ‖v

(l+1)
m,−1‖2) ≥ 0.

(6)

where µm is the Lagrangian multiplier for the constraint of vm,1 ≥
‖vm,−1‖2; λm,2,1 is the first element of λm,2 and λm,2,−1 is the
remaining subvector of λm,2, i.e., λm,2 = [λm,2,1,λ

T
m,2,−1]T ; the

expression 0 ≤ a ⊥ b ≥ 0 indicates the KKT complementarity
condition, i.e., a ≥ 0, b ≥ 0 and a× b = 0.

Assuming vm,−1 6= 0, from eq.(6) we can directly get,{
v
(l+1)
m,1 = c−1

m (cmh̄Tmu(l)
m − λ

(l)
m,2,1 + µm),

v
(l+1)
m,−1 = (cm + µmρm)−1(cmQTu(l)

m − λ
(l)
m,2,−1),

(7)

where ρm , (‖v(l+1)
m,−1‖2)−1 > 0, and µm should be chosen proper-

ly such that the KKT complementarity condition is satisfied.
If (v

(l+1)
m,1 − ‖v

(l+1)
m,−1‖2)|µm=0 ≥ 0, or equivalently if

(cmh̄Tmu(l)
m − λ

(l)
m,2,1) ≥ ‖cmQTu(l)

m − λ
(l)
m,2,−1‖2, (8)

then µm = 0. Otherwise, we have v(l+1)
m,1 = ‖v(l+1)

m,−1‖2 when µm >
0. In the case of

|cmh̄Tmu(l)
m − λ

(l)
m,2,1| < ‖cmQTu(l)

m − λ
(l)
m,2,−1‖2, (9)

combining v(l+1)
m,1 = ‖v(l+1)

m,−1‖2 and ρm‖v(l+1)
m,−1‖2 = 1, we obtain

ρm =
2cm

‖cmQTu
(l)
m − λ

(l)
m,2,−1‖2 + (cmh̄Tmu

(l)
m − λ(l)

m,2,1)
, (10)

µm =
‖cmQTu

(l)
m − λ

(l)
m,2,−1‖2 − (cmh̄Tmu

(l)
m − λ(l)

m,2,1)

2
. (11)

The conditions in eq.(9) guarantee µm > 0 and ρm > 0. Note
there is another possibility besides eq.(8) and eq.(9), i.e.,

−(cmh̄Tmu(l)
m − λ

(l)
m,2,1) ≥ ‖cmQTu(l)

m − λ
(l)
m,2,−1‖2. (12)

In this case, v
(l+1)
m = 0 is an optimal solution, which can be

easily proved by checking the KKT condition in eq.(6).

4.2. Solution to the problem of um

The problem of um is also a very simple problem,

(P5u) min
um

Lcm(w(l+1)
m ,v(l+1)

m ,um,λ
(l)
m )

s.t. 1Tum = 1.

The optimal solution u
(l+1)
m can be easily derived as

u(l+1)
m = B−1(b− θm1), θm =

1TB−1b− 1

1TB−11
,

B , cm(VmVT
m + I),

b , Vm(cmv(l+1)
m + λ

(l)
m,2) + (cmw(l+1)

m + λ
(l)
m,1),

(13)

with θm the Lagrangian multiplier for 1Tu
(l+1)
m = 1.

Then the algorithm is summarized in Tab.1, where we simply
use the distributed algorithm in [18] to solve the PA subproblem.
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Table 1. The Proposed Partially Distributed Algorithm
Initialization: Set system parameters and initial variable values;
Stage 1: Solve the PA subprob. by the distributed algo. in [18];
Stage 2: Solve the BABF subprob. by bisection;

In each bisection iteration, for user m, Repeat
Update wm and vm, as eq.(5) and (7);
Update um as eq.(13),
Update λm as in the ADMM framework;

Until converge, compare
∑K
k=1 ‖wkm‖2 with β;

If ”>”, double check, If still ”>”, (P3) infeasible for γ;
else, (P3) feasible for γ;

Stop: If stop criterion satisfied, stop alternating optimization;
else go to Stage 1;

Debiasing: discard the sparse constraints and apply alternating
optimization again, with wm simply the MMSE beamformer;

Remark 6: The algorithm is ”partially” distributed, since (P5w)
can be solved distributively, while (P5v) and (P5u) are still solved in
a centralized manner (with simple closed-form solutions).

Remark 7: Actually, introducing only one auxiliary variable is
enough to decouple the {wkm} blocks in (P3). However, in this case
solving the remaining SOCP problem is still difficult since it is not
easy to get a closed-form solution.

Remark 8: When the BS assignment converges, an additional
debiasing operation can further improve the min user rate [17, 20].
It discards the sparse constraint and applies alternating optimization
again, with the optimal wm simply the MMSE beamformer.

5. NUMERICAL RESULTS AND CONCLUSIONS

Consider a single macro cell in a SIMO HetNet. The distance be-
tween the adjacent corners of the hexagonal cell is d = 1000m.
There are K = 10 BSs and M = 10 users deployed randomly
in the cell. Each BS is equipped with T = 2 antennas and each
user with a single antenna. The elements of the channel hkm are
generated according to the distribution N (0, σ2

km), where the vari-
ance is given by σ2

km = Lkm( 200
dkm

)3 with dkm the distance be-
tween user m and BS k, and Lkm the shadowing effect satisfying
10log10(Lkm) ∼ N (0, 64). We fix the 0dB environment noise pow-
er for all BSs (i.e., σ2

k = σ2 = 1, ∀k), and let all the users have the
same power budget of 30dB (i.e., p̄m = p̄ = 1000, ∀m).

Three algorithms are compared here. (1) Algo. PD, the proposed
partially distributed algorithm; (2) Algo. CVX, the centralized algo-
rithm which solves the BABF subproblem by the CVX solver; (3)
Algo. RS, which randomly selects some BSs (the number is deter-
mined by Algo. PD) to form the virtual BS and then alternatively op-
timizes p and wm, with wm the optimal MMSE beamformer. The
following results are obtained from 100 simulation trials. Each cor-
responds to a random network configuration including the terminals
(BSs and users) positions and the channel gains.

The performance comparison at different β is displayed in Fig.1.
Firstly, as expected, β can control the size of the virtual BSs. More
BSs tend to join the cooperative reception as β increases. Conse-
quently, the system achieves a higher max-min user rate at the cost
of heavy backhaul overhead. Secondly, the debiasing operation ap-
parently improves the max-min user rate, because it uses the opti-
mal MMSE receive beamformer after the BS assignment converges.
Thirdly, Algo. PD and Algo. CVX achieve very close performance.
It has been observed Algo. PD and Algo. CVX may converge to d-
ifferent stationary solutions. However, it’s interesting that Algo. PD

Fig. 1. Performance comparison v.s. β.

Fig. 2. CPU time comparison v.s. β.

usually gets a sparser solution than Algo. CVX. Lastly, Algo. PD
outperforms Algo. RS which randomly associates users with BSs.

The average CPU time comparison at different β is shown in
Fig.2. In order to simulate the distributed implementation, we record
the CPU time for each step and divide the CPU time of the steps dis-
tributively implemented by the number of terminals. Then summing
up these results produces the final CUP time in partially distribut-
ed implementation. Note the results in Fig.2 are normalized by the
largest CPU time in the simulations. As expected, Algo. PD outper-
forms Algo. CVX substantially in terms of normalized CPU time.
This is reasonable since in each iteration the BABF subproblem is
solved efficiently in closed-form by Algo. PD and about one third
of the tasks can be implemented distributively. Note Algo. RS has a
very low CPU time because there is no BS assignment procedure and
the optimal receive beamformer is simply the closed-form MMSE
beamformer. It implies the CPU time of the debiasing operation is
neglectable in Algo. PD.

In summary, the proposed partially distributed algorithm can ef-
fectively control the backhaul overhead in the coordinated reception
for an uplink SIMO HetNet. Moreover, the ADMM reformulation
apparently improves the algorithm’s efficiency, since it can be imple-
mented in a partially distributed manner and in each step the problem
is solved in closed-form. Some interesting future directions of this
work are under investigation, e.g., how to extend this work into the
case of complex channels; and how to integrate the BS activation
problem into this work, i.e., we need to control not only the size of
each virtual BS, but also the total number of active BSs.
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