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ABSTRACT
Underwater acoustic channels are wideband time-varying chan-
nels, which can be well-described by a multi-scale multi-lag
channel model. In this paper, a robust method to estimate the
channel parameters from noisy measurements is proposed. The
proposed method computes the multiple Doppler scales, delays,
and channel attenuation gains corresponding to different propa-
gation paths. In this work, we adapt a spectral line estimation
algorithm with a low number of measurements and modest com-
plexity to compute the unknown channel parameters. The per-
formance of the proposed estimation strategy is investigated via
numerical simulation and shows that our method has at least 5
to 10 dB improvement in signal-to-noise ratio over previously
proposed methods.

Index Terms— Underwater acoustic channels, Doppler
scaling, Multiscale-Multilag channel, OFDM.

1. INTRODUCTION
The need to for high performance underwater acoustic (UWA)
communication is motivated by both commercial and military
applications. Achieving this goal is challenged by the low speed
of propagation of sound in water, as well as the relatively high
Doppler induced by mobility. In narrowband communication
channels, the Doppler effect can be modeled as a frequency
offset. Hence, when the maximum-likelihood (ML) approach
is applied to estimate the parameters, it results in a simple
correlation-based algorithm to estimate the frequency offset [1];
delays are computed using cyclic-prefix properties, and channel
gains can be estimated using a least squares estimator [2].

In wideband signaling environments such as underwater
acoustic communications, the Doppler distortion on each path
results in a time scaling (compression or dilation) of the sig-
nal [3,4]. As such, the effective channel can be well described by
a MSML channel model [4,5]. In contrast, for multi-scale, multi-
lag (MSML) channels, the corresponding maximum-likelihood
(ML) approach requires solving a multi-dimensional non-linear
least-squares problem, incurring high complexity. In [6], the
MSML channel model is considered, and subspace algorithms
from the array processing literature, namely Root-MUSIC [7]
and ESPRIT [7], are be applied to estimate the MSML channel.
Herein, we will compare our proposed method to those of [6]
over which we get significant performance improvement. In
this paper, we introduce a new method to jointly estimate the
Doppler scaling factors, delays and channel attenuation gains
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given that the number of different propagation paths is known.
The main contributions of our work are: (i) we adapt and ro-
bustify the spectral estimation problem to estimate the MSML
channel from noisy measurements; (ii) the proposed method
is able to estimate the closely spaced frequencies generated by
the scaling effect in the MSML channel; (iii) capability of high
resolution estimation with low number of measurements with
help of the structure of received signal.

The rest of this paper is organized as follows. The signal
and MSML channels model are presented in Section 2. Section
3 presents the proposed channel estimation algorithm. Section 4
presents the numerical simulations to verify performance of the
proposed algorithm, and Section 5 concludes the paper.

2. COMMUNICATION OVER MSML CHANNEL
The transmitted passband OFDM signal is given by

x(t) =

K∑
k=1

ske
j2πfkt, (0 ≤ t ≤ T ), (1)

where T is the OFDM symbol duration, K is the number of sub-
carriers, sk is the data modulated onto the kth subcarrier; fk is
the kth subcarrier frequency, where fk = fmin+k∆f ; ∆f = 1

T
is the sub-carrier spacing; fmin is minimum carrier frequency;
and B = K∆f is the bandwidth of the system. A rectangular
pulse shape over the interval t ∈ [0, T ] is employed. The signal,
after passing through a linear time-varying (LTV) channel, can
be written as,

y(t) =

+∞∫
−∞

h(t, τ)x(t− τ)dτ + n(t), (2)

where n(t) is assumed to be additive, white Gaussian noise. The
received signal is an aggregation of several scaled copies of the
delayed and attenuated transmitted signal. The MSML channel
model can be represented by h(t, τ) =

∑M
n=1 hn(t)δ(τ−τn(t)),

where hn(t) is the path amplitude, τn(t) is the time-varying path
delay, and M is the number of dominant propagation paths. The
continuously time varying delays are caused by motion of the
transmitter/receiver as well as scattering off of the moving sea
surface or refraction due to sound speed variations. The path
amplitudes change with the delays as, the attenuation is related
to the distance traveled as well as the physics of the scattering
and propagation processes. For the duration of an OFDM sym-
bol, the time variation of the path delays τn(t) evolves linearly
as a function of time, namely τn(t) = τn − ant where an is
Doppler scaling factor. Thus the channel impulse response can
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be simplified to

h(t, τ) =

M∑
n=1

hnδ(τ − [τn − ant]). (3)

Then the received signal, y(t), can be represented as

y(t) =

M∑
n=1

K∑
k=1

hnske
j2πfk(t−(τn−ant)) + n(t), (4)

where n(t) is additive noise.
Remark 1. Suppose the frequencies fk lie in [−W,W ], namely
B = 2W = K∆f , and d(t) is a continuous signal of the

form: d(t) =
M∑
n=1

K∑
k=1

hnske
j2πfk(t−(τn−ant)). By taking reg-

ularly spaced Nyquist samples at t ∈
{

i
2W |i ∈ Is

}
, where

Is = {0, 1, 2, ..., Ns − 1}, we observe

d[i] =

M∑
n=1

K∑
k=1

hnske
−j2πfkτne

j
[
2π

fk
2W (an+1)

]
i
,

where fk
2W ∈ [0, 1]. Therefore after a trivial translation of the

frequency domain, we can map fk
2W = fmin

K + k
K to the new

normalized frequency for d[i] as f̂k = k
K . Thus, any mixture

of sinusoids after appropriate normalization, can be assumed to
have frequencies in [0, 1].

We can express the sampled signal as y[i] = d[i] + n[i],
where the index i denotes the sample time. We rewrite d[i] as

d[i] =

MK∑
l=1

clz
i
l , (5)

where l = (k − 1)M + n with 1 ≤ k ≤ K and 1 ≤ n ≤M ,

c(k−1)M+n = hne
−j2πf̂kτnsk, (6)

z(k−1)M+n = ej2πfk(1+an). (7)

From Equation (7), we see that the zk are clustered around each
subcarrier frequency due to small value of an.

3. CHANNEL ESTIMATION
A natural approach to solve the parametric estimation problem
in (4) is maximum likelihood estimation (MLE) . We remark that
MLE can take the form of a spectral estimation problem consid-
ering the representation form in (5), which consists of retriev-
ing the parameters of a sum of complex exponentials from noisy
samples. When the unknown extant frequencies in the signal are
not too close to each other, classical spectral estimation tech-
niques like MUSIC [7], and ESPRIT [7], or greedy strategies,
can be used; they are fast, but statistically suboptimal. Here, due
to the typical values of an, frequencies in each cluster are too
close to each other, resulting in poor performance of the afore-
mentioned methods. In the sequel, we suggest an approximation
method for ML which is based on standard line spectral esti-
mation methods and its robust extensions which we specialize
to the MSML channel case. The resulting method is of mod-
est complexity, and is effective in separating the closely spaced
frequencies in the noisy signal.

3.1. Standard line spectral estimation algorithm
We determine the unknown parameters cl ∈ C and zl ∈ C for
1 ≤ l ≤ MK in the following model using Ns available mea-
surements of the signal,

d[i] =

MK∑
l=1

clzl
i for ∀i ∈ Is. (8)

The basic idea is to recognize that Equation (8) is the solution to
a homogeneous difference equation whose characteristic equa-
tion has roots equal to the poles in (8), namely

MK∑
k=0

q[k]d[m− k] = 0, q[MK] = 1, (9)

where the q[k] are the unknown coefficients in the difference
equation, i.e., Q(z) =

∑MK
k=0 q[k]z−k is an annihilator filter for

the measurement signal d[i], (q ∗ d)[i] = 0 for i ∈ Is. Note
that hereafter we will denote the coefficients of a polynomial,
say Q(z) as a vector using bold lowercase, i.e., q. To compute
the coefficients, cl, and poles, zl, we adopt the following steps:
first, we determine the annihilating filter; this involves solving
a linear system of equations; second, we find the roots of the
z-transform of the annihilating filter, which is a nonlinear func-
tion; and third, we solve another linear system of equations to
determine the weights. We next elaborate upon these three steps.

Finding the filter coefficientQ(z): We can rewrite the Eq. (9) in
matrix/vector form as Dq = −d where D ∈ C(Ns−MK+1)×MK

is Hankel matrix, i.e. [D]i,j = d[j− i], and [d]i = d[i+Mp−1]

Finding the zk: Once the vector q has been computed, the
pole locations are estimated as the roots of the polynomial
Q(z) =

∑MK
k=0 q[k]z−k = 0, q[MK] = 1.

Finding the ck: The final step is to solve for the vector c in
(8).

Remark 2. Since the data are noisy, the solution to Hankel equa-
tions (9) will produce perturbed linear prediction coefficients.
The algorithm then finds the poles by rooting the perturbed
polynomial. The algorithm uses the perturbed pole locations
to generate the Vandermonde system of equations to determine
c. Hence, errors caused by noise in the data propagate and am-
plify through the algorithm. In prior work, [8], Least- and Total
Least-squares methods were employed to improve robustness to
noise. The main drawback for the Least-Squares (LS) family of
approaches is that they need a large number of measurements
(Ns � 2MK). Increasing the size of the data matrix also
increases the complexity of theses methods.

3.2. Structural Algorithm for MSML channels Estimation
In this section, we design an algorithm which requires fewer
number of measurements, while being robust to noise. In the
sequel, we show that the data matrix D for the case of OFDM
transmission over an MSML channel is a low rank Hankel ma-
trix with rank M . This structural feature enables data denois-
ing to reduce the perturbation error in low SNR. Furthermore,
since the data matrix is low rank, we need much fewer mea-
surements to estimate the channel parameters than the methods
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in [6]. In particular, for a data matrix D with rank M , we just
needNs = MK+M −1 measurements to estimate the channel
parameters, which is almost half of the minimum number of re-
quired measurements for the LS family of methods and other
prior methods. As mentioned in Section I, the newly gener-
ated frequencies due to scaling effect in MSML channel, namely
{fkan : for n ∈ {1, 2, ...,M}} are close to each other and the
corresponding carrier frequency fk for k ∈ {1, 2, ...,K}. In the
following theorem, we show that because of this property, the
vector of coefficients associated to polynomial Q(z) has spar-
sity (compressibility) of order M , which dictates the (near) low
rank property to the data matrix D.
Theorem 1. Suppose that the measurement data follow (5)
with defined parameters in (6) and (7). Let us define P (z) =∏M
n=1

(
1− zanz−K

)
, where zan = ej2πan . Then,

(a) Q(z) can be approximated by P (z), i.e.

Q(z) ≈
M∏
n=1

(
1− zanz−K

)
,

(b) the approximation error is bounded as,

‖q− p‖22
L

≤ 2c0π
2

M

M∑
n=1

a2n,

where c0 ≤ 1 is a constant and L = MK is the length vector q.
The proof of Theorem 1 is in Appendix A. Based on Theo-

rem 1, we see that for data generated by OFDM signaling and
passed through MSML channel, Q(z) can be well approximated
by a polynomial P (z) with M non-zero coefficients. Since
the vector d is approximated well by M specific columns of
D (which is specified by non-zero coefficients in q), we can
conclude that rank{D} ≤ M . Now, since we have this prior
structural information about matrix D that it is a low-rank Han-
kel matrix, we can use this information to denoise the data
matrix. To this end, we seek the best Hankel approximation to
Dz

(
noisy data matrix, i.e., Dz = D + Z, where Z is a matrix

whose elements are Gaussian noise
)

with rankM . We can recast
this statement to the following matrix approximation problem,

D̂ = argmin
Y
‖Y −Dz‖2F s.t. rank(Y) = M, (P1)

where Y is a Hankel matrix. The structured low rank approxima-
tion (SLRA) problem (P1), which consists of projecting a matrix
onto the intersection of a linear subspace and a non-convex man-
ifold, is an NP-hard problem [9]. A possible approach to circum-
vent the general NP-hardness of low-rank approximation, is to
replace the rank by its convex surrogate: the nuclear norm [10].
Thus the SLRA problem in (P1), is converted to

D̂ = argmin
Y
‖Y −Dz‖2F + λ‖Y‖∗, (P2)

where Y is a Hankel matrix and the nuclear norm of a matrix,
‖.‖∗, is the sum of its singular values. The Lagrangian param-
eter λ controls the tradeoff between the two terms. This is a
convex optimization problem; in particular, it can be recast as
a semidefinite program (SDP). There are a variety of solution
methods for solving the SDP in (3.2) such as the alternating di-
rection method and the augmented Lagrange multiplier (ALM)

method [10, 11]. In the following, we state a theorem to show
that the solution computed by (P2) provides a close approxima-
tion to the noiseless data matrix.
Theorem 2. Assume Dz = D + Z where Z is noise matrix. To
recover D using (P2), for λ ≥ 2‖Z‖2, we have

‖D∗ −D‖F ≤ 64λ
√
M (10)

where D∗ is the solution found by solving (P2).
The proof of Theorem 2 is in Appendix B. Based on the

derived bound for remaining error in Theorem 2, we can con-
clude that the denoising algorithm performs quite well. Note
that after computing the parameters cl and zl by the proposed
algorithm, we need just 2 pilots per symbol to compute the
channel parameters, an =

∠z(k−1)M+n

2πfk
− 1, |hn| =

∣∣∣ c(k−1)M+n

sk

∣∣∣,
and ∠hn − 2πfkτn = ∠

c(k−1)M+n

sk
.

In the following, we state the proposed MSML channel es-
timation algorithm, which is explained in detail earlier in this
section.

Structural MSML channel estimation algorithm:
Step 0: Construct augmented data matrix Da = [D,d].
Step 1: Perform denoising on Da by (P2), using any SDP

algorithm, say by ALM [11].
Step 2: Construct matrix Dp by eliminating the columns

associated with zero coefficients in vector p from D̂.
Step 3: Compute the non-zero elements of p as,

p = −D−1p d.
Step 4: Compute the roots of Q(z) ≈ P (z), namely zl.
Step 5: Find cl using (8).
Step 6: Compute the channel parameters using (6), (7),

and pilot subcarriers information.

4. NUMERICAL RESULTS
In our simulations, we consider the OFDM signaling with four
subcarriers (N = 4), subcarrier space is ∆f = 250 Hz, and
carrier frequency fc = 10 kHz. We assume that the number
of multipath, M , is equal to 5; and channel parameters are
given as, channel gains = [1 0.625 0.455 0.372 0.155], chan-
nel delays = [5, 7.5, 10.5, 15.8, 23] msec., and Doppler scales
= [1.3, 5.3, 9.7, 16.7, 23.4]∗10−3. In Fig. 1, the performance of
our proposed algorithm is compared with the Root-MUSIC [7]
and ESPRIT [7] algorithms suggested in [6] for MSML under-
water channel estimation and TLS-Prony [8]. We see that our
proposed algorithm has better performance. Thus, exploiting
the signal structure provides measurably improved performance.
Both Root-MUSIC and ESPRIT are implemented based on the
methods in [6] which also take advantage of a sparse model, but
for the channel versus the effective data matrix [6]. As men-
tioned in [6], the reason that ESPRIT has worst performance is
due to model mismatch and the existence of closely frequencies.
To compute the MSE, we consider that MSE = ‖ĥ− h‖22 where
‖.‖2 represents l2-norm of a vector and element in [h]l = clzl
with sk = 1 and indexing is similar to (5) and (6). As observed
from Fig. 1, our methods achieve the same MSE with 5 to 10
dB less SNR than the methods of [6].

5. CONCLUSIONS
In this paper, we considered the estimation of multi-scale, multi-
lag channels. We adapted a spectral line estimation approach
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Fig. 1: Mean-square-error (MSE) versus signal-to-noise ratio
(SNR) comparison.

to estimate the MSML channel, based on the path-based model.
Taking advantage of the low rank structure of the data matrix,
our proposed method is robust to noise and also requires a low
number of measurements to estimate the closely spaced frequen-
cies with high resolution. Finally, in the simulation results, we
show that the proposed algorithm provides the performance (in
SNR sense) with a 5 to 10 dB improvement compared to prior
approaches.

A. PROOF OF THEOREM 1
(a). We start the proof by definition of Q(z). We know that

Q(z) =

MK∑
l=0

q[l]z−l =

MK∏
l=1

(
1− zlz−1

)
, (11)

where zl are defined in (7) as z(k−1)M+n = ej2πf̂kej2πf̂kan .
Lets rewrite the product in (11) as following:

Q(z) =

M∏
n=1

K∏
k=1

(
1− z(k−1)M+nz

−1) . (12)

We know that f̂k = k
K ≤ 1 and an � 1

(
|an| < 10−2

)
, there-

fore it is reasonable to say that f̂kan = k anK ≈
an
K

1. Thus we
can conclude that z(k−1)M+n ≈ ej2πf̂kej2π

an
K . Then plugging

this value in (12), we have

Q(z) ≈
M∏
n=1

K∏
k=1

(
1− ej2πf̂kzanz−1

)
. (13)

Let us define f(z) =
∏K
k=1

(
1− ej2πf̂kz−1

)
. Since e−j2πf̂k

are zeros of unity for 1 ≤ k ≤ K, we can conclude that
f(z) = 1 − z−K , then we have

∏K
k=1

(
1− ej2πf̂kzanz−1

)
= f

(
z
zan

)
= 1 − zKanz

−K . if we plug this value in (13), we

1we recognize that this approximation may seem loose; however, the result-
ing sparse structure significantly increases the robustness of our algorithm.

will obtain the desire result for (a).
(b) We first provide a lemma regarding the relationship be-
tween the perturbation of a polynomial root and its coefficients
perturbation.
Lemma 1. (see [12]) Suppose that zl is the a root with multi-
plicity αl of polynomial p(z) , i.e. p(z) = (z − zl)αl p̂(z) where
p̂(zl) 6= 0. Furthermore, consider that p′(z) = (z − z′l)

αl p̂(z)

where z′l = zl + δzl. Then, |δzl| ≈ ‖p − p′‖
1
αl , where |δzl| is

the absolute value of δzl and p and p′ are the coefficient vectors
associated with polynomials p(z) and p′(z), respectively.

Using Lemma 1, we know that if we change the root zl =

ej2πf̂kej2π
k
K an to z′l = ej2πf̂kej2π

an
K , where l = (k − 1)M +

n, and design new polynomial Ql(z) =
(
1− z′lz−1

) Ql−1(z)
(1−zlz−1) ,

then we have

‖ql − ql−1‖22 ≈ |zl − z′l|2 =
∣∣∣ej2π k

K an − ej2π
an
K

∣∣∣2
≈
∣∣∣∣(1 + j2π

k

K
an)− (1 + j2π

an
K

)

∣∣∣∣2 = 4π2a2n
k2 − 1

K2

We assume that all roots are perturbed similarly, thus we can
bound the difference between the coefficient in the resultant
polynomial and the original polynomial as,

‖q0 − qMK‖22 =

∥∥∥∥∥
MK−1∑
l=0

(ql − ql+1)

∥∥∥∥∥
2

2

≤
MK−1∑
l=0

‖(ql − ql+1)‖22

where q0 = q and qMK = p. Therefore, we can conclude that

1

L
‖q− p‖22 ≤

M∑
n=1

K∑
k=1

4π2a2n
k2 − 1

MK3
= c0

(
4π2

M

M∑
n=1

a2n

)
where c0 = K+3

3K < 1 for K ≥ 2.

B. PROOF OF THEOREM 2
Assume D∗ is a feasible solution for (P2) and D̂ is the optimal
solution of (P2), then we have,

‖D̂−Dz‖2F + λ‖D̂‖∗ ≤ ‖D∗ −Dz‖2F + λ‖D∗‖∗,

which can be rewritten as, ‖D̂ − Dz‖2F − ‖D∗ − Dz‖2F ≤
λ
{
‖D∗‖∗ − ‖D̂‖∗

}
. Let us define ∆ = D∗ − D̂. Now per-

forming some algebra yields the inequality

‖∆‖2F ≤ 2| 〈vec{Z}, vec{∆}〉 |+ λ
{
‖D̂ + ∆‖∗ − ‖D̂‖∗

}
,

where vec{.} represents the vector form of a matrix, and< ., . >
denotes the vectors inner product (dot product). We know that
| 〈vec{Z}, vec{∆}〉 | = |trace{ZH∆}|. Now using the Holder
inequality for matrix product [14] and norm inequalities, i.e.
‖A‖2 ≤ ‖A‖F ≤

√
r‖A‖2 where r is the rank of matrix A,

we have ‖∆‖2F ≤ 2‖Z‖2‖∆‖∗ + λ‖∆‖∗. By our choice of λ in
the Theorem, we have ‖∆‖2F ≤ 2λ‖∆‖∗. Now we need to find
a maximum bound for the right hand side, namely ‖∆‖∗ using
following lemma.
Lemma 2. (see, e.g., [13]) There exists a matrix decomposition
for error matrix ∆ as ∆ = ∆1 + ∆2 such that (i) rank(∆1) ≤
2M and (ii) ‖∆2‖∗ ≤ 3‖∆1‖∗.

Using Lemma 2 and norm inequality we have, (i) ‖∆1‖∗ ≤√
2M‖∆1‖F ≤ 2

√
M‖∆‖F and (ii) ‖∆‖∗ ≤ ‖∆1‖∗ +

‖∆2‖∗ ≤ 4‖∆1‖∗. Putting together these pieces, we have
‖∆‖F ≤ 64λ

√
M .
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