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ABSTRACT

Parametric transduction systems employ the nonlinear

propagation of acoustic waves in fluid media. The nonlinear

effects are beneficially used, which is in contrast to classic

communication approaches. In this paper, a point-to-point

model for the underlying parametric channel is investigated

using a grey-box modelling approach. Prior knowledge is

derived from a physical modelling.

As a result, a block-oriented model is derived that consists

of the concatenation of a static nonlinearity and a dynamic

linearity. The structure belongs to the class of Hammerstein-

Models, which are commonly used in nonlinear system mod-

elling. In contrast to a black-box approach, the derived model

simplifies parameter identification significantly and supports

the design of high performance parametric communication

systems.

Finally, measurement results which are in good agreement

with the derived model are reported.

Index Terms— nonlinear channel modelling , Parametric

Communication System, parametric transduction

1. INTRODUCTION

The propagation of acoustic waves in fluid media is a non-

linear process. Especially in high power scenarios, nonlinear

effects cannot be neglected.

Communication systems usually suffer from nonlinearity

and performance degrades with rising nonlinear effects such

as the Kerr effect in optical communications [1] or power am-

plifier distortions in satellite communications [2]. Since these

systems focus on pure linear wave propagation, a variety of

techniques to overcome or at least minimise nonlinear distor-

tions have been developed in the certain fields.

Contrarily, particular communication systems employ

nonlinear wave propagation and use nonlinear effects bene-

ficially, for instance sub button profiling [3, 4], parametric

underwater communications [5, 6, 7, 8], virtual microphones

[9] or the audio spotlight [10]. These systems are based on the

parametric array [11]. For this, an appropriately modulated

high frequency acoustic wave, called primary wave, is trans-

mitted. Because of its high centre frequency, the primary

wave features a high directivity and a high absolute band-

width enabling ultra-wideband modulation. During nonlinear

wave propagation, intermodulation within the transmitted

primary wave takes place. As a result, a secondary wave of

new frequencies is generated, which possess low frequency

components. These low frequency components feature nearly

the same high directivity and the same absolute bandwidth as

the transmitted primary wave. In this way, a modulated wave

with favourable properties can be generated.

A variety of applications are discussed in literature, but

only little investigations concerning the underlying nonlinear

channel from the theoretical point of view can be found. Since

a proper channel model is inevitable for the design of high

performance parametric systems, a point-to-point model for

the nonlinear parametric channel is established in this paper.

The investigation of nonlinear models is basically chal-

lenging and solutions have to be found for the particular

scenarios. A black-box approach, as it was reported for the

parametric channel in [12], does not consider any knowledge

about the physical process. Consequently, corresponding

models feature a high complexity, give only little under-

standing about the internal behaviour, usually need a severe

identification effort and their accuracy depends strongly on

the acquired measurements. A complete white-box approach

on the other hand is highly complex and corresponding ap-

proaches suffer from assumptions.

For these reasons, a grey-box modelling approach is dis-

cussed in this paper. The obtained model is physically mo-

tivated and hence gives qualitative knowledge about the in-

ternal behaviour of the nonlinear propagation process. This

supports the system design, e.g. the finding of appropriate

modulation schemes or the investigation of appropriate iden-

tification methods.

The prior knowledge is obtained from a physical mod-

elling discussed in Sec. 2. As a result, a block-oriented model

that consists of the concatenation of a static nonlinearity and

a dynamic linearity is established in Sec. 3. Finally, a para-

metric transmission system is applied to validate the derived

model. The results are discussed in Sec. 4. The paper con-

cludes in Sec. 5.
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2. PHYSICAL MODELLING

2.1. Basic equation set

A physical modelling of the wave propagation in fluid media

is briefly summarized to generate prior knowledge. For this

purpose, the fluid will be described by its intrinsic state vari-

ables, which are the local pressure p = p0+ p̃, local density

ρ = ρ0 + ρ̃ and velocity v. Here, p0 and ρ0 are equilibrium

state variables in the quiescent fluid and p̃, ρ̃ and v are distur-

bances induced by a propagating wave.

Dependencies of these state variables are formulated in a

basic equation set [13], which consists of the Euler equations

∂ρ

∂t
= −div{ρv} (1)

∂

∂t
{ρv} = −

(

div
{

ρv·vT
})T

− grad{p} , (2)

namely the equation of continuity and the equation of motion,

as well as the equation of state for isentropic processes

ρ = f(p) . (3)

The equation set of (1)-(3) is commonly used in fluid dynam-

ics and is accurate for ideal fluids, i.e. fluids with zero vis-

cosity. Real fluids like water or air feature a low viscosity and

are appropriately modelled using this equation set.

The equation of continuity (1) describes the conservation

of mass in a compressible fluid flow. No further simplifica-

tion is needed for the further modelling. The equation of mo-

tion (2) describes the conservation of momentum and features

a second-order and a third-order nonlinear term. A second-

order approximation to reduce complexity gives the approxi-

mation ρv·vT ≈ ρ0v·v
T. As a result, the vector identity

(

div
{

v·vT
})T

= v div{v} +
grad

{

v2
}

2
−v×rot{v} (4)

can be substituted into (2). For ideal fluids that are initially at

rest, the constraint rot{v} = 0 holds for every time instance.

The discussed manipulations give the equation of motion

∂

∂t
{v ρ} ≈ −ρ0 v div{v} −

ρ0
2
grad

{

v2
}

−grad{p} . (5)

To apply the second-order approximation on the equation of

state, the nonlinear function in (3) is developed in a Taylor

series and higher order nonlinear terms are neglected, giving

ρ(p) ≈ ρ0 +

2
∑

n=1

1

n!

∂nρ

∂pn

∣

∣

∣

∣

p=p

(p− p0)
n . (6)

2.2. Second-order wave equation

The second-order approximations of the basic equations can

be substituted into one differential equation, reading after

r
′

r−r
′

r

virtual source

point

primary wave pp

secondary

wave ps

Fig. 1. Considered geometry.

some manipulations

1

c20

∂2p̃

∂t2
−∆p̃ = ρ0 div{v div{v}}

+ ρ0
1

2
∆ v2 −

∂2

∂t2

{

1

2

∂2ρ

∂p2
p̃2
}

. (7)

To simplify equation (7), the quasi-linear approach [14, 15]

is applied. Here, the initially transduced wave is denoted as

primary wave pp. This primary wave is assumed to propagate

mainly in a linear fashion for what reason its propagation is

described by the linear approximation of the basic equation

set (1)-(3) [15]. Due to the propagation in the nonlinear fluid,

the primary wave is supposed to create virtual sources, see

Fig. 1. These virtual sources are spatially distributed and

radiate elementary waves of a so-called secondary wave ps,
which has new frequency components. Since it has a low

power, the secondary wave is also assumed to propagate in a

linear fashion but not to create any further nonlinear sources.

As a result, the nonlinear terms on the right of (7) are only

created by the primary wave pp and the linear terms on the left

describe the linear propagation of the nonlinearly generated

secondary wave ps.
Applying this and neglecting near field effects of the

transducer, a manipulation by substituting the linear basic

equations into the right side of (7) results in

1

c20

∂2ps
∂t2

−∆ps = β
∂2p2p
∂t2

, (8)

with β = 1
c4
0
ρ0

(

1−
c4
0
ρ0

2
∂2ρ
∂p2

)

. The right side of (8) is the

source strength density of the virtual sources. Equation (8)

was first derived by Westervelt [11, 16] and will be used for

the following channel modelling. For this, the wave equation

(8) is transformed into the frequency domain, reading

(2πf)2

c20
P s +∆P s = β(2πf)2

(

P p ∗ P p

)

. (9)

3. CHANNEL MODELLING

3.1. Solution of the Wave Equation

In the following, the solution of the Westervelt equation is dis-

cussed to obtain prior knowledge for the channel modelling.
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Fig. 2. Point-to-point model (a) and simplified model (b) for

a single virtual source point.

The considered geometry is shown in Fig. 1. For simplifi-

cation, the source that radiates the primary wave is consid-

ered as a point source at the origin having the source strength

Q
p
(f). According to the quasi-linear approach, the primary

wave mainly propagates in a linear fashion, giving at a certain

point r′ the primary wave

P p(f, r
′) = G(r′)Q

p
(f) , (10)

where

G(r′) =
e−j2πfr′/c

4πr′
(11)

is Green’s function according to the phase shift and the spher-

ical spreading during the free space wave propagation [15].

The primary wave creates at the point r′ a virtual source with

the source strength density

q(f, r′) = β(2πf)2
(

P p ∗ P p

)

(f, r′) . (12)

The complete virtual source distribution radiates with the

source strength density in (12), giving at a certain point r the

secondary wave

P s(f, r) =

∫∫∫

V ′

G(r− r
′) q(f, r′) dr′ . (13)

Substituting the equations (10)-(12) into (13) gives a relation

between the transduced and the nonlinearly generated wave.

3.2. Channel Model for a Single Virtual Source Point

Based on the discussed solution in equation (13), a block-

oriented channel model is derived in the following.

At start, only the presence of one virtual point source is

considered, compare Fig. 1. For this, the point-to-point model

shown in Fig. 2(a) can be motivated. The first block describes

the linear propagation of the primary wave to the point r′ ac-

cording to equation (10). Then, a virtual source that radiates

a wave proportional to the auto-convoluted primary wave is

created by the primary wave at the point r′, compare equation

(12). This is modelled by the second and third block in Fig.

2(a). The fourth block finally describes the linear propagation

of the secondary wave field to point r.

The structure in Fig. 2(a) can be simplified. Consider-

ing a non-dispersive propagation velocity c, the order of the

first and second block can be changed. For this, the linear

block has to be multiplied by the factor 1/(4πr′). The con-

catenated linear subsystems are then combined to one linear

system, reading

Gg(f, r, r
′) =

1

4πr′
G(r′)β(2πf)2G(r− r

′)

= G0(r, r
′)e−jφ(r,r′)f2 (14)

with the substitutions G0(r, r
′) = β/(16πr′2 ||r − r

′||) and

φ (r, r′) = 2πf (r′ + ||r− r
′||) /c . The model parameters

G0 and φ can be fully determined as a function of the vectors

r
′ and r. Thus, the resulting model shown in Fig. 2(b) is

a white-box model representing the exact solution in (13) of

the wave equation (9) for one single source point.

3.3. Channel Model for the Complete Source Distribution

Considering the complete source distribution, the contribu-

tions of all virtual source points in the source volume have to

be summed up, see equation (13). This means that an infinite

number of single source point models shown in Fig. 2(b) have

to be connected in parallel. The nonlinear blocks can simply

be extracted to one block in front of the parallel branches.

Nevertheless, this results in an undetermined model structure,

because the linear subsystems induce different distortions in

dependence on their particular virtual point source. Hence, a

white-box approach is not straightforward any more.

For this reason, a grey-box modelling approach will be

discussed in the following. The linear subsystems can be

gathered and one system representing the overall linear distor-

tion can be used instead. This leads to a model structure simi-

lar to the model shown in Fig. 2(b) but now with unknown pa-

rameters G0 and φ . Nevertheless, the model gives qualitative

knowledge about the parametric wave propagation process,

i.e. the linear and nonlinear signal distortions. This enables

the investigation of appropriate signal processing strategies in

the particular fields of application without the determination

of the exact solution in (13).

It can be seen, that the model consists of a concatena-

tion of a static nonlinear and a dynamic linear subsystem.

This is a major outcome of this modelling approach. In com-

parison to a dynamic nonlinear system, the presence of the

static nonlinearity simplifies the signal processing effort sig-

nificantly, e.g. for parameter identification. Moreover, the

derived model structure is a special kind of the well investi-

gated Hammerstein-Models [17] for what reason correspond-

ing signal processing methods may be applicable for the case

of parametric transduction.
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Fig. 3. Measurement setup.

4. VALIDATION

The results reported below support the derived model struc-

ture, especially the presence of a static nonlinearity.

The parametric transduction system depicted in Fig. 3

was used for the measurements. The primary signal is trans-

duced by an acoustic transducer array consisting of 8x16

PROWAVE 400ST100 array elements. Each row, i.e. 16

array elements, can transmit a separate signal, which is gen-

erated by a desktop PC, subsequently D/A-converted and

amplified. For the measurements, a sinusoid at f1=39.6 kHz
was transmitted by four output channels and another sinusoid

at f2 = 40.4 kHz was transmitted with the others. In this

way, secondary components at fdiff = f2−f1=0.8 kHz as

well as at fsum = f1+f2=80 kHz are nonlinearly created

during wave propagation, where possible contributions at

these frequencies originating from amplifier nonlinearity are

prevented. The resulting wave is received by a condenser

microphone of the type Microtech Gefell MK301, low-pass

filtered and amplified. Both the D/A-and the A/D-converter

work at 250 kHz sampling frequency and are synchronised,

so that the sound pressure level (SPL) for each frequency

could be estimated using the least-squares algorithm.

Fig. 4(a) shows denoted by M1 the estimated SPL vs. the

distance r between the transducer array and the microphone.

The waves are supposed to suffer a propagation loss due

to spherical spreading and attenuation. Thus, extrapolation

curves of the form E(f)=P0(f)−20 log10(r)− r αdB(f)
with P0(f) and αdB(f) denoting the initial SPL and the at-

tenuation coefficient at a certain frequency, respectively, are

plotted to evaluate the measurement results. For the primary

wave, the measurement results and the extrapolation curve

are in a good agreement. Since the secondary wave is pro-

portional to the squared primary wave, see equation (12) in

the time domain, the secondary wave suffers twice the trans-

mission loss of the primary wave within the active region of

the parametric array. This is illustrated by the extrapolation

curve 2E(f1,2), where twice the transmission loss of the pri-

mary wave is considered at the initial SPL of the secondary

component. In this scenario, the active region is about 4m,

see Fig. 4(a). Beyond this region, no further significant

primary sources exist and the secondary wave propagates in

good agreement to E(fdiff). This shows that the observed

parametric wave propagation can be properly explained by

the physical modelling discussed in Sec. 2.

Furthermore, the SPL of the primary wave was varied and

the SPLs of both the difference and sum frequency compo-
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Fig. 4. Measurement results.

nent were measured at a distance of 5m. Fig. 4(b) shows the

results denoted by M2. It can be seen that the SPLs of the

secondary components increase linearly with an increase in

the SPLs of the primary field. For reason of comparison, lin-

ear extrapolation curves denoted by L are plotted in Fig. 4(b)

for both of the secondary components. The curves feature a

slope equal to two, since the secondary wave is proportional

to the squared primary wave. In a further measurement, a

third sinusoid at f3 = 40.8 kHz was additionally transmitted

by two of the output channels. The SPLs are again estimated

and shown in Fig. 4(b) denoted by M3. It can be seen that the

obtained results are identical to the results of M2. This shows

that a change in the primary wave form does not influence the

secondary wave generation at the measured frequencies. This

behaviour is not expected when a significant dynamic non-

linear element is presence, which is sensitive to variations in

the wave form. Consequently, the measurements indicate the

presence of a static nonlinearity and a dynamic linearity in the

parametric channel.

Further measurements with varying distances and fre-

quencies confirmed this observation.

5. CONCLUSION

In this paper, a grey-box modelling approach for the nonlinear

parametric channel was discussed. Starting from the physical

modelling, a model that consists of a concatenation of a static

nonlinear and a dynamic linear subsystem was established.

Most notably is the presence of a static nonlinear system that

simplifies the signal processing effort significantly.

First measurement results were reported which support

the assumption of a static nonlinear element in the channel

model. In future work, more extensive measurement cam-

paigns have to be carried out to validate the derived model.
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