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ABSTRACT
Many statistical models (mainly due to physical propagation
studies and field measurements) have been proposed to char-
acterize the statistics of the NLOS flat-fading wireless com-
munication channel. There appears to have no known statisti-
cal theory on the formation of many of these fading envelope
statistics. We offer the statistical modeling of fading enve-
lope statistics under the NLOS assumption based on the SIRP
representation. In practice, these channel statistics cannot be
modeled with certainty. We advocated the use of moment-
bound theory to obtain bounds on the system performance
metrics. In this paper, we combine the theory of moment
bounds with that of SIRP, and the use of the SDP optimiza-
tion method to show how sharper bounds of the error rate and
ergodic channel capacity of a communication system can be
computed.

Index Terms— Fading distribution; Spherically-invariant
random process; Semi-definite programming; Moment bound
theory; performance bounds of BPSK systems.

1. INTRODUCTION

Most wireless transmission systems are operating in Non-
Line-Of-Sight (NLOS) scenarios, where the received wave-
forms do not have direct path components from base stations
(BS) to receivers. The simplest fading model for the NLOS
scenario follows from the Central Limit Theorem, where
large number of small-valued multipath signals in both the
I-component and the Q-component of the received waveform
are assumed to follow a Gaussian distribution. Thus, the
envelope of the received fading signal becomes Rayleigh dis-
tributed. In reality, extensive field measured data for outdoor
and indoor scenarios have shown the NLOS fading signal
envelopes have diverse statistical characterizations such as
Weibull, Nakagami-m, Gamma, etc. distributions (which are
all examples of a generalized Gamma distribution). These
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statistical distributions can lead to communication system
performances significantly worse than those provided by the
simple Rayleigh envelope model. To analyze a set of dis-
tributions which are far more general than the Rayleigh, a
model is proposed based on the replacement of the Gaussian-
process model with that of Spherically Invariant Random
Processes (SIRPs). The combination of SIRPs with the Fox
H-function yields an exceedingly general parametric model
which encompasses, as special cases, the most commonly
used fading-envelope generalized Gamma distributions. In
Section 2, we consider a concise summary of the Spheri-
cally Invariant Random Process (SIRP) method [1, 2] for
modeling the envelope of the fading signals. Specifically,
we show the distribution of the fading envelope denoted by
the random variable (r.v.) X can be modeled as the prod-
uct of a nonnegative-valued r.v. V (with a pdf fV (v)) and a
Rayleigh distributed r.v. R. In Section 3, we formulate the
performance evaluation of a wireless communication system
with uncertain fading distribution as a moment-bounds prob-
lem. Using the results in Section 2, we further transform the
problem into a semi-definite program (SDP), which can be ef-
ficiently solved. In Section 4, we consider the minimum and
maximum of the bit error rate (BER) Pb of a binary phase-
shift-keyed (BPSK) wireless fading communication system
under different SIRP fading scenarios. Explicit solutions to
these minimum and maximum values of BER’s are compared
to the explicit evaluations of BER’s for different SIRP cases
in Section 2. A brief conclusion is given in Section 5.

2. SPHERICALLY INVARIANT RANDOM PROCESS

The SIRP {X(t),−∞ < t <∞}’s nth order pdf is

pX(x)=Cn

∞∫
0

1

v
e−(1/2)(x−µ)T (v2Σ)−1(x−µ)fV (v) dv, (1)

where x ∈ Rn, Cn = (2π)−n/2|Σ|−1/2 is a normalization
constant, µ is the mean vector, and Σ is the positive definite
covariance matrix. Eq.(1) shows that the nth order pdf of an
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SIRP is the statistical average of the nth order pdf of a Gaus-
sian process with an arbitrary nonnegative-valued univariate
r.v. V whose pdf is fV (v). This means that SIRP processesX
have the simple interpretation of being equivalent to {X(t) =
V Y (t),−∞ < t < ∞}, where {Y (t),−∞ < t < ∞} is
a Gaussian process independent of V . Thus, SIRP processes
generalize Gaussian processes.

2.1. SIRP and NLOS Fading Statistics

Consider now narrowband processes and their envelopes. A
narrowband Gaussian process can be expressed as Y (t) =
YI(t) cos(2πft) − YQ(t) sin(2πft), where YI(t) and YQ(t)
are two zero-mean independent low-pass Gaussian pro-
cesses. Its envelope RY (t) = (YI(t)2 + YQ(t)2)1/2, has
a Rayleigh pdf (without loss of generality, throughout this
paper we assume E(R2

Y ) = 1). For SIRPs, we have
{X(t) = V Y (t),−∞ < t < ∞}. Thus, X(t) is also a
zero-mean narrowband process whose envelope is RX(t) =
(XI(t)2 + XQ(t)2)1/2 = ((V YI(t))2 + (V YQ(t))2)1/2 =
V RY (t), where RY (t), the envelope of a Gaussian process,
has a Rayleigh pdf. To simplify our notation, we suppress the
variable t and denote the original envelope of the Gaussian
process by R, and the fading SIRP envelope by X . Thus,

X = V R, (2)

where V is the same nonnegative-valued univariate r.v. as
above having a pdf fV (v).

From elementary probability theory, if V and R in (2) are
two independent nonegative-valued univariate r.v.’s, then the
pdf ofX satisfies fX(x) =

∫∞
0

(1/v)fR(x/v)fV (v) dv, 0 <
x < ∞, showing that the pdf of X is the random mixture of
fR(r) with mixing distribution fV (v).

2.2. Parametrizing the pdf of X: Fox H-function

For the SIRP model to be useful to characterize the fading
channel statistic for the NLOS scenario, we must be able to
show that for any of the known fX(x) fading envelope pdfs
(e.g., Weibull, Nakagami-m, etc.) and fR(r) being a Rayleigh
pdf, there must be fV (v) pdfs satisfying (2).

The Mellin transform [3] F (s) of any f(x) univariate pdf
defined on (0,∞) is given by

F (s) =M{f(x)} =

∫ ∞
0

f(x)xs−1dx = E{Xs−1}. (3)

Raising both sides of (2) to the (s − 1) power and taking ex-
pectations after noting that V and R are independent, we see
that (3) yields

M{fX(x)} =M{fV (x)}M{fR(x)}. (4)

We denote the Mellin transform of fX(x), fV (x), and fR(x)
by FX(s), FV (s), and FR(s), respectively. Then

FV (s) =M{fV (x)} =
M{fX(x)}
M{fR(x)}

=
FX(s)

FR(s)
, (5)

and hence

fV (x) =M−1

{
M{fX(x)}
M{fR(x)}

}
=M−1

{
FX(s)

FR(s)

}
. (6)

The Mellin transform of fR(x) is well-known, and Mellin
transforms of fX(x) are also known for many classes of
NLOS envelope pdfs. However, the inverse Mellin transform
of the ratio on the two terms on the RHS of (6) may not be
readily obtainable in closed form. However, by using the Fox
H-function representation [4] of all these pdfs, fV (x) can be
found explicitly [2, 5].

2.3. System Performance Under SIRP Fading

In wireless communications, it is well known that the fading
statistics can significantly affect the performance of the sys-
tems. Consider coherent detection of a BPSK system over a
frequency-flat slow SIRP fading channel modeled by

Z = Xs+ n, (7)

where s ∈ {±
√
Eb} is the transmitted symbol with energy

Eb, the noise n d
= N (0, N0/2) is Gaussian with variance

N0/2, and X is the envelope of the SIRP fading channel. Let
X = V R be the SIRP decomposition. The bit error probabil-
ity (BER) given V can be written as

PbRay(V ) =
1

2

(
1−

√
V 2γ

1 + V 2γ

)
, (8)

where γ = Eb/N0 is the average signal-to-noise ratio (SNR).
The average BER is given by

Pb =

∫ ∞
0

PbRay
(v2γ)fV (v) dv. (9)

3. GENERALIZED MOMENT PROBLEM

Consider a performance metric φ(X) such as BER or chan-
nel capacity of a wireless communication system, which de-
pends on the fading channel envelope X . When the distribu-
tion fX(x) of X is completely known, we can evaluate the
expected performance E(φ(X)) by numerical integration or
Monte Carlo simulation. However, in many situations the dis-
tribution of X is unknown and we only have limited knowl-
edge about it. Since we cannot evaluate the expected value of
φ(X) directly, we seek the bounds L ≤ E(φ(X)) ≤ U so
that they are consistent with our prior knowledge of X . The
problem of finding the sharpest bounds is called the General-
ized Moment Problem (GMP).

The tightness of the bounds depends on how much we
know about X . The more information we have, the tighter
the bounds will be. We may model the pdf fX(x) ∈ P comes
from some “uncertainty set” P of distributions. We may also
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provide the range of the moments of X . In this paper, we
will consider P to be the class of SIRP fading envelopes, as it
provides a unified framework for all well-known fading dis-
tributions. Mathematically, the GMP has the form

inf
X∼P

E(φ(X)) (10)

s.t. E(f(X)) = b (11)
E(g(X)) ≤ c, (12)

where f and g are vector-valued functions known as the gen-
eralized moment functions, and b, c are constant vectors. The
notation X ∼ P means fX(x) ∈ P .

3.1. GMP with SIRP Fading

We cannot solve (10) directly because the constraint X ∼
P is in an intractable form. Instead, we define Φ(V ) =
E(φ(X) | V ), F (V ) = E(f(X) | V ), G(V ) = E(g(X) |
V ) and consider the following GMP

inf
V≥0

E(Φ(V )) (13)

s.t. E(F (V )) = b, (14)
E(G(V )) ≤ c. (15)

Because of the SIRP decomposition (2), it is not difficult to
see that (10) and (13) are equivalent. With this technique, we
transformed the difficult constraint X ∼ P into a Stieltjes
type problem and is efficiently solvable by SDP solvers [6].

4. PERFORMANCE BOUNDS OF BPSK

Arguably the most important performance metrics for wire-
less communication systems are the bit error rate and the
channel capacity. In this section, we use the BPSK system to
demonstrate how to find sharp performance bounds using the
GMP reformulation (13).

4.1. Bounds of BER with SIRP and SNR constraints

The instantaneous bit error rate of a BPSK system is given by

Pe = Q(
√

2X2γ̄). (16)

Condition on V , the BER is given by (8). Using the technique
in section 3.1, we can reformulate the GMP as

inf
V∼M+(R+)

PbRay
(V ) (17)

s.t. γE(V 2) = SNR. (18)

The problem can be transformed into an SDP and hence effi-
ciently solvable by the freely available tools like cvx [7] and
SeDuMi [8].
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Fig. 1: The BER performance bounds for BPSK systems un-
der uncertain SIRP fading statistic. The value m refers to
the corresponding Nakagami-m fading case. Note that for
m = 1 Nakagami-m becomes Rayleigh, and it achieves the
BER lower bound.

We compare the bounds with Nakagami-m fading channel
in Fig. 1. The pdf of Nakagami-m is given by

fX(x) =
2mm

Γ(m)Ωm
x2m−1 exp

(
−m

Ω
x2
)
. (19)

Using Fox H-function technique in section 2.2, the mixing
distribution of Nakagami-m fading envelope is found to be

fV (v) =
2(m

Ω )m

Γ(m)Γ(1−m)
v2m−1(1− m

Ω
v2)−m, (20)

for 0 < v <
√

Ω/m and 0 < m ≤ 1. See Fig. 2. Note that
Nakagami-m distribution is defined for m ≥ 1/2. Neverthe-
less, the pdf and its mixing distribution fV is still well-defined
for m = 1/4.

Observe that as m decrease, the corresponding mixing
distribution will have more mass sitting around V = 0. This
coincides with the general interpretation of the m parameter
as the “severity” of Nakagami-m fading. The smaller m is,
the worse the fading will be. In fact, as m→ 0, almost all the
mass will be concentrated at 0 and an infinitesimal mass will
be located at infinity to satisfy the SNR constraint.

On the other hand, the best SIRP fading case is when V
is deterministic, namely no mixing. The fading envelope be-
comes Rayleigh.

4.2. Capacity bound with non-Rayleigh constraint

Another important performance metric for wireless commu-
nication systems is the channel capacity. The ergodic channel
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Fig. 2: The mixing distribution fV (v) of Nakagami-m fad-
ing envelope. When m = 1 Nakagami-m becomes Rayleigh,
hence fV (v) becomes a delta function, indicating that there
is no mixing. The case m = 1/4 does not belong to the
Nakagami-m family. Nevertheless it has well-defined mixing
distribution and envelope.

capacity of the system (7) is given by

E(C(X)) = E(log(1 +X2γ̄)) bits/sec/Hz. (21)

We can find the capacity bounds by solving the GMP

inf
V∼M+(R+)

E(E(C(X) | V )) (22)

s.t. γE(V 2) = SNR, (23)

Var (V ) = σ2
V . (24)

Note that to further tighten the bound, we impose a variance
constraint (24) on V . This prevents the mixing distribution
from degenerating to a delta function, and the resulting SIRP
fading statistic will be non-Rayleigh. Hence we refer to this
constraint as the non-Rayleigh constraint.

We compare the capacity bounds with Nakagami-m fad-
ing model with m = 1/4 in Fig. 3. We select the variance σ2

V

in (24) according to the mixing distribution (20) so that it is
consistent with the case m = 1/4.

Without fading, the capacity is given by log(1 + SNR)
(marked by AWGN). Without the non-Rayleigh constraint
(24), the capacity upper bound will match the Rayleigh curve.

5. CONCLUSION

In this paper, we first introduced the SIRP model to char-
acterize a broad class of fading channel envelope statistics.
The resulting representation allows us to explicitly evaluate
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Fig. 3: The ergodic channel capacity of (7). With the non-
Rayleigh constraint (24) we obtained tighter bounds that in-
clude the Nakagami-m fading model with m = 1/4 as a spe-
cial case.

the upper and lower bounds of the BER and ergodic capac-
ity using the SDP method. Explicit evaluation of four cases
of the Nakagami-m fading envelope scenarios are shown to
be consistent with the bounds. From the above (and exten-
sive prior known) results, severe fading can cause significant
loss of system performance for a single transmitter/receiver
system. Thus, diversity, MIMO, etc., schemes have been pro-
posed to mitigate these severe fading problems.
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