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ABSTRACT

This paper studies the problem of competitive spectrum manage-
ment in the presence of channel estimation errors. In particular, we
study the effect of the channel estimation error on the Bayesian Inter-
ference Game (BIG), in which two selfish wireless systems (players)
share the same frequency band, where each player knows its own
channel gains but does not know the other players channel gains. In
the case where the channel is estimated perfectly, the BIG is known
to have a spectrally efficient equilibrium point, which produces a
higher payoff to both players than the trivial equilibrium, in which
both players always interfere with each other. However, the assump-
tion that each player knows its own channel gains impeccably is not
practical due to estimation error. The latter leads to payoff perturba-
tions, which can reduce spectral efficiency by driving the spectrally
efficient equilibrium point unstable. In this paper, we show that the
spectral efficiency is robust to small estimation errors; i.e., the BIGs
spectrally efficient equilibrium point preserves its properties in the
presence of estimation errors.

1. INTRODUCTION

Consider independent wireless communication systems, which share
the same frequency band. These systems create interference, which
results in major performance loss that decreases the overall spec-
trum utilization. Thus, efficient spectrum management is an im-
portant proliferate field of research [1–8, e.g.]. An important type
of spectrum management is the competitive one where each system
shapes its spectrum to maximize its utility, in this paper it is the in-
formation rate. Each system’s action affects other systems’ utility
and vice versa. Thus, a natural tool to analyze such interactions is
game theory. Particularly useful is the notion of Nash Equilibrium
(NE) [9, see e.g.] which describes a stable operating point; i.e., a
strategy profile that each player (system) can only lose if it unilater-
ally deviates from it. For a game where players share a flat fading
interference channel with complete information1, it is known [5] that
the Full Spread (FS) strategy, where both players spread their pow-
ers equally over the entire band, is a NE point. It is also known
[5, 10] that in many cases, the FS NE point is spectrally inefficient.
This happens when joint Frequency Division Multiplexing (FDM) is
better for both players than mutual FS but the system operates in a
mutual FS because the players are subject to the prisoner’s dilemma
[4, 10].

In practice, however, communication systems operate with some
estimation error. The only aspect of this problem that has been stud-
ied is where players fail to meet some operating constraints, in par-
ticular, interference constraints. In this case, the perturbed game

1By complete information, we mean that every user knows all direct and
cross channel gains of all users in the network.

(the game under estimation error) can be seen as a robust game, in
which players maximize their own payoff under a constraint, on their
strategy profile, which limits the interference. This game was first
formulated and analysed [11] for spectrum sharing between cogni-
tive radios which are constrained not to interfere with the primary
user [12–16]. A similar problem also appears in DSL [17] for non-
competitive spectrum management; i.e., an optimization of a joint
utility rather than a game in which each player selfishly optimizes
its own utility.

We consider a different aspect of the competitive spectrum man-
agement problem under estimation error, in which the error affects
players’ utility, rather than strategy profile. We consider a two-player
game with two types of channel uncertainty. The first is where each
player knows its own channel gains imperfectly due to estimation
error. This estimation error leads to payoff perturbations; i.e., each
player has some uncertainty on its own payoff. The second uncer-
tainty is where each player does not know the opponent’s channel
gains. Rather, it knows the opponent’s channel statistics2. In the
case of flat fading channels and no estimation error, the above game,
known as the Bayesian Interference Game (BIG) [19], has a non
pure-FS equilibrium point; that is, an equilibrium point where play-
ers may chose FDM, depending on the their channel gains. This
non-FS equilibrium point pareto dominates the FS NE point; i.e., an
equilibrium point which improves both players’ performance with
respect to the FS NE point, and therefore, leads to a better spec-
trum utilization. However, in the case of estimation error, there are
payoff perturbations, which may have a devastating effect on equi-
librium points and drive the system out of stability; i.e., a player can
gain by unilaterally deviating from the equilibrium point. Such a
phenomenon makes equilibrium points, which are derived under the
assumption of no estimation error, unuseful in practice.

In this paper, we show that the BIG is robust to small estimation
errors; that is, it is shown that BIG’s equilibrium points which are
functions of the true channel gains are still useful when the players
use the estimated gains.

The paper is organized as follows. Section 2 presents the sys-
tem model and reviews the BIG. Section 3 discusses the BIG and its
properties under estimation errors. Sections 4 and 5 provide simula-
tions and conclusions, respectively.

2. THE BAYESIAN INTERFERENCE GAME(BIG)

Consider a two-user flat-fading interference channel (see [19] Fig.
1(a)) without interference cancelation; i.e., each user treats the other
user’s signal as noise. During the channel coherence time, player i’s

2This statistics vary slowly compared to the instantaneous channel gains
and therefore, can be easily communicated [18].
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signal is given by

Wi(t) = HiiVi(t) + HijVj(t) + Ni(t), (1)

where i, j ∈ {1, 2}, i 6= j, Vi(t), Vj(t) are user i’s and j’s trans-
mit signals, respectively, Ni(t) is a white Gaussian noise with vari-
ance σ2

N and Hiq, i, q ∈ {1, 2} are random fading-channel gains.
Throughout this paper, the index j is never equal to i. Both players
have a total power constraint of p̄. We denote user i’s Signal to Noise
Ratio (SNR) and Interference to Noise Ratio (INR) as Xi = γ|Hii|2

and Yi = γ|Hij |2, respectively, where γ = p̄/σ2
N . The realizations

(sample points) of Xi, Yi are denoted by xi, yi, respectively.
In the BIG, user i’s channel state information (CSI) at the trans-

mitter side is xi, yi. It does not observe Yj and Xj but only knows
its distributions. The channel is divided into two equal sub-bands
and player 1’s and 2’s actions are given by

p1(θ1) = p̄[θ1, 1 − θ1]
T

p2(θ2) = p̄[1 − θ2, θ2]
T (2)

respectively. The first and second entries of each vector represent
the power invested in the first and second sub-bands, respectively
(see also [19] Fig. 1(b)), where θi ∈ Θi = {1, 1/2}. The actions
θi = 1 and θi = 1/2 correspond to FDM and FS, respectively. This
formalism implies that players coordinate in advance to use disjoint
subbands in the case of FDM. We assume that during a single co-
herence period, players manage their spectrum only once, based on
their knowledge. Therefore, if the interaction is repeated it will be
with different and independent channel realizations. This represents
a case where the channel varies fast or a case where simplicity re-
quirements enable a single spectrum shaping every coherence pe-
riod.

Definition 1 The Bayesian Interference Game (BIG) is defined by
the following:

1. Set of players {1, 2}.

2. Action set Θ = {1, 1/2}. Let θi ∈ Θ be the action chosen by
player i, then according to (2), θi = 1 corresponds to FDM
and θi = 1/2 corresponds to FS.

3. A set of positive and independent random variables X1, Y1, X2, Y2

whose distributions are common knowledge. Each player i
observes the realized values of Xi, Yi but does not observe
Xj , Yj .

4. A utility function ui (θi, θj , xi, yi) given in [19, Table 1].

5. A set of pure strategies S = S1 × S2 where every Si ∈ Si

is a function that maps values of xi, yi to an action in Θi;
i.e., Si : Xi × Yi −→ Θi, where Xi = Range(Xi) and
Yi = Range(Yi).

Player i’s objective is to maximize his conditional expected pay-
off given his private information xi, yi; i.e.,

πi(Si, Sj , xi, yi) , E {ui(Si, Sj , Xi, Yi)|Xi = xi, Yi = yi} (3)

3. THE BIG UNDER ESTIMATION ERROR

In [19, Theorem 4] it is shown that the BIG has an ε-NE [19, Defini-
tion 5] point in which both players have higher payoff than in the FS
NE point. An ε-NE is defined as follows:

Definition 2 For ε > 0, an ε-NE point is a strategy profile (Ŝ1, Ŝ2)
such that

πi

(
Ŝi, Ŝj , xi, yi

)
≥ sup

Si∈Si

πi

(
Si, Ŝj , xi, yi

)
− ε, ∀xi, yi (4)

The idea behind ε-NE points is that if one of the players deviates
from it, he can gain no more than ε additional payoff. From a prac-
tical point of view, for sufficiently small ε, ε-NE points are as stable
as ordinary NE points.

However, if the channels are not estimated perfectly, the estima-
tion error affects the utility ui (xi, yi, θi, θj), which is the mutual
information between the received signal Wi and the transmitted sig-
nal Vi, assuming Gaussian signaling3. The new utility is

ùi(x̂i, ŷi, θi, θj) = I(Wi; Vi|Si = θi, Sj = θj , X̂i = x̂i, Ŷi = ŷi)
(5)

An important question arises: will a small estimation error drive the
system out of stability? The following definition extends the well-
known notion of robustness of NE points [9, Definition 12.1] to ε-NE
point.

Definition 3 An ε-NE point (ŝ1, ŝ2) [19, Definition 5] with payoff
u1, u2 is said to be robust if for every δ > 0 there exists η > 0 such
that for every ù1, ù2 which satisfies maxθi,θj |ui − ùi| < η, i, j ∈
{1, 2}, i 6= j, the point (ŝ1, ŝ2) is a (ε + δ)-NE in the perturbed
game; i.e., the same game with perturbed payoff ù1, ù2.

In simple words, an ε-NE point is robust if small payoff pertur-
bations makes it an (ε + δ)-NE. Because ε and δ are very small, the
ε-NE and the (ε + δ)- are essentially the same. This is an important
property since if an equilibrium point moves drastically (that is, the
point’s strategy profile varies drastically) due to small payoff pertur-
bations it is completely useless in practice, since players could gain
significantly by deviating from that original point. In what follows
we show that the ε-NE point given in [19, Theorem 4] is robust to
perturbations resulting from estimation errors. The first step towards
this goal is to analyze the estimation error effect on the utility. The
following lemma shows that this utility is ”continuous” with respect
to the channel estimates; i.e., that the perturbed utility converges to
the true utility as the estimation error “approaches” (to be defined in
the lemma) zero.

Lemma 1 Assume that the channels gains have finite first and sec-
ond moments and that the channels are estimated by a sequence of
estimates {Ĥ l

iq}
∞
l=1, 1 ≤ i, q ≤ 2, all defined on the same prob-

ability space (Ω,F , P ). Assume further that Fl ⊆ Fl+1 where4

Fl = σ
(
Ĥl

iq

)
, σ(X) = {A ∈ F : A = X−1(B), B ∈ B (R)},

and B (R) is the Borel sigma filed on R. Then, for every γ, the utility
in (5) satisfies

ù
(
X̂ l

i , Ŷ
l

i , θi, θj

)
− u

(
X̂l

i , Ŷ
l

i , θi, θj

)
l→∞
−−−→ 0 a.s.,

∀θi, θj ∈ {1/2, 1},
(6)

where X̂l
i = γ|Ĥ l

ii|
2 and Ŷ l

i = γ|Ĥ l
ij |

2. Furthermore, the result is
not limited to a game in which the players are restricted to Gaussian
signaling.

Proof: [20].

3See [5], for further discussion of the rational for choosing this utility.
4Intuitively, this condition implies that Ĥl+1

iq exploits the measurements

used by its predecessor Ĥl
iq and additional measurements.

430



In the next theorem it is shown that BIG’s spectrally efficient
equilibrium point is robust to estimation error.

Theorem 2 Let Ŝl
i be the strategy profile in [19, Theorem 4] with

X̂ l
i , Ŷ

l
i substituted for Xi, Yi. Then, under the conditions of Lemma

1, the BIG’s non pure-FS ε-NE point [19, Theorem 4] is robust to
estimation error. That is, for every ε, there exists γ0, such that for
every γ > γ0 there exists L such that for every l > L, (Ŝl

1, Ŝ
l
2) is an

ε-NE of the perturb BIG; i.e., the BIG but with information X̂ l
i , Ŷ

l
i

and utility ùi instead of Xi, Yi and ui, respectively.

Proof: [20].
Note that the robustness indicated by Theorem 2 is different than

Definition 3 in that it is restricted to perturbation due to estimation
error.

4. SIMULATION RESULTS

While Theorem 2 shows robustness to estimation errors, it does not
indicate how small the error must be. We now address this problem
via simulation. Consider the BIG in a flat Rayleigh fading channel,
where in every coherence period, user i obtains unbiased estimates
|Ĥiq|2, q = 1, 2. The estimates are then used for spectrum shaping,
according to the non-FS ε-NE strategy profile in [19, Theorem 4],
instead of the perfectly known |Hiq|2. We assume that during the
estimation phase players coordinate to transmit their training signals
in disjoint sub-bands. Thus, each player observes

Wt
iq = Ht

iqdt + Nt, t = 1, ..., T, q = 1, 2 (7)

where t is the channel coherence-interval index, which consists M
time slots. The vector Wt

ii ∈ CM×1 is used for the direct channel
estimation and Wt

ij is used for the interference estimation. Also,
dt = [dt

1, ..., d
t
M ]T is a known training signal5 and Nt is a white

circularly Gaussian noise vector with covariance σ2
NI. The channels

Ht
iq, q = 1, 2 distribute as Ht

iq v CN
(
0, σ2

iq

)
.

In the simulation we use the following channel model

Ht = σΦt (8)

where Φt, t = 1, ..., T are i.i.d. CN(0, σ2) and σ is a deterministic
that remains constant for t = 1, ..., T [21].

4.1. Known Channel Statistics

The first simulation studies the BIG in the case where σ is known and
the unknown Φt (of equivalently Ht) is estimated at each coherence
time form Wt (see (7)). The MMSE estimate of Ht is

Ĥt = dHWt

σ2
N((σ2)−1+||d||2/σ2

N) (9)

The simulation is carried out as follows. We draw a sample of flat-
fading channels with pathloss σ2

11 = σ2
22 = 105 dB, and ISR1 =

ISR2 = −2 dB, where ISRi = σ2
ij/σ2

ii. The training signal dt is
chosen as a constant vector of ones. The noise floor is -121 dBm and
p̄ = 0 dBm. Each player estimates its own channel and interference;
i.e., player i estimates Ĥiq, q = 1, 2. In the presence of estimation
error, there is no closed form expression for the BIG payoff. We

5This assumption is made to simplify the analysis. In general, since the
BIG has no interference cancellation, only the interference power is required
and thus, players can use energy detector without knowing their opponent’s
training sequence.
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Fig. 1. Payoff gain (ratio), with estimation error (solid lines) and
without estimation error (dashed lines), of the ε-NE point’s payoff
with respect to the FS point’s payoff as a function of the training
size. The results were averaged over 104 Monte Carlo trials.

therefore use the lower bound in Table 1, proven in Appendix ??, to
evaluate the performance gain; i.e., the lower bound on the perfor-
mance gain is the ratio between the bound in Table 1 to the payoff
obtained when both players choose FS without estimation error. The
conditional variance used in Table 1 is given by

σ2
Hiq |Ĥiq

= var
(
Hiq|Ĥiq

)
=

σ2
iqσ2

n

‖d‖2σ2
iq+σ2

n
=

σ2
iq

σ2
iq‖d‖2/σ2

n+1

(10)
In [20] it is shown that the bound in Table 1 approaches the non
perturbed payoff [19, Table 1] as the estimation error approaches
zero. Figure 1 depicts the payoff gain as a function of the training
size M . The result shows that the BIG is robust to estimation errors
even for short training length.

4.2. Unknown channel statistics

In the previous simulation we assumed that the channel distribution
is perfectly known. In many practical cases, the channel distribution
is only known up some to unknown parameters. To demonstrate the
problem we return to the channel model (8) Ht = σΦt, where now
σ, which represents the channel statistic, is a deterministic unknown,
in addition to the random unknown Φt, t = 1, ..., T . This is a hybrid
estimation problem; i.e. an, estimation problem where some of the
unknown parameters are deterministic while the others are random.

The problem was studied in [21] which suggested estimating
σ using the asymptomatically optimal ML estimator [see e.g. 22,
Chapter 8.5]

σ̂2
ML = 1

‖d‖4 dH
(
R − Iσ2

v

)
d, (11)

where Rt = 1
t

∑t
q=1 WqW

H
q , and estimating ĤT as

ĤT = dHWT

σ2
n((σ̂2

ML)−1+||d||2/σ2
n) (12)

To justify the use of ĤT , [21] derived the Hybrid Cramèr-Rao lower
Bound (HCRB) on the estimation error of HT

σ2
H,HCRB = 1

σ−2+‖d‖2/σ2
n

(13)

and showed in simulations that the estimator in (12) achieves the
HCRB as T −→ ∞. In the following lemma we show that the
HCRB is indeed an asymptotically tight bound and is achieved by
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Table 1. Lower bound on user i’s payoff ui(X̂i, Ŷi, θi, θj)

θj = 1 θj = 1/2

θi = 1
FDM

1
2

log2

(

1 +
E{X|X̂i}
σ2

H|Ĥ
γ+1

)
1
2

log2

(

1 +
E{X|X̂i}i

1+3σ2
H|Ĥ

γ/2+E{Y |Ŷi}/2

)

θi = 1
2

FS

1
2

log2

(

1 +
E{X|X̂i}/2

σ2
H|Ĥ

γ/2+1

)

+ 1
2

log2

(

1 +
E{X|X̂i}/2

1+3σ2
H|Ĥ

γ/2+E{Y |Ŷi}

) log2

(

1 +
E{X|X̂i}/2

1+σ2
H|Ĥ

γ+E{Y |Ŷi}/2

)

the estimator in (12) as T, M −→ ∞.

Lemma 3 The estimator ĤT in (12) satisfies

(ĤT − H)

σH,HCRB

d
−→ CN (0, 1) (14)

as M, T −→ ∞, where
d
−→ denotes convergence in distribution.

proof: [20].
Now that we have established that the estimator in (12) is asymp-

totically optimal, we repeat the previous simulation (Sec. 4) in the
case where the channel statistic is also unknown. The difference is
that in this simulation each player estimates the channel gains (12),
which requires estimating the channel statistics, via (11); i.e., player
i estimates Hiq, and σiq for q = 1, 2. Each player chose an action
using [19, Theorem 4] where the estimated channels and estimated
channel statistics are substituted for the true values. At each Monte
Carlo trail, the game is repeated with different channel realizations
drawn from an independent and identically distributed random vari-
ables. The only thing that is accumulated from stage to stage is the
estimation of the channel statistic; i.e., at game t, R(t) in (11) is
calculated as R(t) = (t− 1)/tR(t− 1) + rtr

H
t . Fig. 2 depicts the

payoff gain for M = 5, averaged over 10000 Monte-Carlo trails. It
shows that the equilibrium point is still robust even for small values
of T .

5. SUMMARY

In this paper we studied the robustness of the competitive spectrum
management problem to estimation errors by analysing BIG. In the
case where there are no estimation errors, the BIG is known to have
a spectrally efficient equilibrium point. We have shown that this
spectral efficiency is not affected by small estimation errors.
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