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ABSTRACT

We address the problem of designing an optimal pointwise shrink-
age estimator in the transform domain, based on the minimum prob-
ability of error (MPE) criterion. We assume an additive model for
the noise corrupting the clean signal. The proposed formulation is
general in the sense that it can handle various noise distributions.
We consider various noise distributions (Gaussian, Student’s-t, and
Laplacian) and compare the denoising performance of the estima-
tor obtained with the mean-squared error (MSE)-based estimators.
The MSE optimization is carried out using an unbiased estimator of
the MSE, namely Stein’s Unbiased Risk Estimate (SURE). Experi-
mental results show that the MPE estimator outperforms the SURE
estimator in terms of SNR of the denoised output, for low (0 − 10
dB) and medium values (10− 20 dB) of the input SNR.

Index Terms— Risk estimator, Stein’s unbiased risk estimation,
minimum probability of error, shrinkage function.

1. INTRODUCTION

An unbiased estimate of mean squared error (MSE), namely Stein’s
Unbiased Risk Estimator (SURE), was proposed in a seminal pa-
per by Stein [1] for estimating the mean of an independent and
identically distributed (i.i.d.) multivariate Gaussian distribution. He
showed that the resulting shrinkage-type estimator of mean, obtained
by minimizing the SURE, dominates classical least squares estimate
when the number of data points exceeds 3. Since MSE is a function
of the unknown parameters to be estimated, direct minimization of
it results in an unrealizable estimator. The fundamental philosophy
behind the risk estimation methodology is to replace MSE by its un-
biased estimate, which depends only on the observations. Recently,
many applications such as image and speech denoising have success-
fully deployed this approach to find an estimate of the clean signal
buried in noise [2,13]. It is possible to obtain a biased estimate of the
parameter that has a lower MSE than an unbiased estimate of it by
scaling that unbiased estimate with a scalar between zero and one.
The resulting biased estimator is called shrinkage estimator [14]
and the corresponding multiplier can be obtained by minimizing
SURE. The original formulation of SURE based on the assumption
of independent Gaussian noise was later extended to certain dis-
tributions in continuous and discrete exponential families in [15]
and [16], respectively. Both [15] and [16] rely on the assumption
of independence of observations. SURE for non-i.i.d. multivariate
distributions in the exponential family was recently developed by
Eldar [9].

Even though the parametric model of the distribution of obser-
vation is known, incorporation of the prior knowledge in classical

SURE framework is limited only up to the estimation of second-
order statistics. Irrespective of the distribution of the observations,
the shrinkage estimator obtained through minimization of SURE
will depend only on second-order statistics (c.f. Appendix). Assum-
ing that the parametric form of the noise distribution is known, we
consider a new cost function for denoising based on minimizing
the probability of error between the estimate and the true parameter
exceeding a threshold. Prior knowledge of the distribution enables
analytical computation of such a cost. We then develop a risk es-
timator for the minimum-probability-of-error (MPE) criterion and
obtain the optimal shrinkage parameter. We consider applications to
electrocardiogram (ECG) signal denoising in various noise condi-
tions – Gaussian, Student’s-t, and Laplacian. Notably, the Gaussian
and Student’s-t distributional behavior of noise is preserved by a
linear orthonormal transformation [17]. In Section 2, we develop
the theory for Gaussian statistics first and then extend it to other
distributions. In Section 3, we present results related to denoising
of a synthesized signal and ECG signal.

2. PROBLEM FORMULATION AND PROPOSED METHOD

Consider the vector signal model x = s+w, where s ∈ Rn denotes
the clean signal vector and x is the observed signal corrupted by ad-
ditive and white Gaussian noise w, with known covariance matrix
σ2I. We assume that the estimator of s from x is a pointwise shrink-
age function, that is, the estimate of si, the ith entry of s, is of the
form si = aixi, where ais, with 0 ≤ ai ≤ 1, are shrinkage parame-
ters to be obtained by minimizing a suitable cost function, popularly
referred to as risk in the statistics literature. Since the estimate of si
depends only on xi and not on xjs for j 6= i, we drop the index i
in the remainder of the analysis, in the interest of notational brevity.
We propose a risk function of the form

R = P (|ŝ− s| > ε) , (1)

for a suitably chosen ε > 0, which directly captures the probability
that the estimated value lies outside an ε-radius of the actual param-
eter value s. Since ŝ = ax, and x follows a Gaussian distribution
with mean s and variance σ2, we have that z ∆

= ŝ−s = ax−s is dis-
tributed as N

(
(a− 1)s, a2σ2

)
. As a consequence, the expression

ofR simplifies to

R = P (|z| > ε)

= Q

(
ε− (a− 1)s

aσ

)
+Q

(
ε+ (a− 1)s

aσ

)
, (2)

whereQ(·) denotes the tail probability of the standard Gaussian dis-

tribution, given by Q(u) = 1√
2π

∫∞
u

exp
(
− t

2

2

)
dt. The expres-
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Fig. 1. (Colour online) Variation of the proposed risk-estimate (av-
eraged over 100 noise realizations) and the SURE with respect to the
shrinkage parameter a. The value of ε chosen in (a) is ε = 3σ.

sion of risk depends on s, which is the parameter to be estimated,
and consequently the value of a obtained by minimizing R also de-
pends on s, thereby resulting in an unrealizable estimator. To alle-
viate this problem, we replace s by its maximum-likelihood (ML)
estimate, namely, ŝML = x in the expression of risk in (2). Hence,
we obtain an estimate of the actual risk R given by

R̂ = Q

(
ε− (a− 1)x

aσ

)
+Q

(
ε+ (a− 1)x

aσ

)
, (3)

which is minimized over a to obtain the optimum shrinkage param-
eter aopt. Therefore, we have that

aopt = arg min
0≤a≤1

Q

(
ε− (a− 1)x

aσ

)
+Q

(
ε+ (a− 1)x

aσ

)
. (4)

Subsequently, the estimate of the parameter s is obtained by multi-
plying x with the optimum shrinkage parameter, that is, ŝ = aoptx.
We deploy the steepest descent method to solve the optimization
problem in (4). Starting from an initial guess a(0), the value of a
is updated as a(t+1) = a(t) − µ(t) dR̂

da
, where µ(t) > 0 is the step

size chosen in iteration t. The optimum value of the parameter ob-
tained by minimizing the SURE is aSURE = max

{
0, 1− σ2

x2

}
. To

illustrate how the actual risk R and and its estimate R̂ behave as a
function of the shrinkage parameter a, the following experiment is
carried out. We consider the problem of estimating a scalar s = 4 in
additive Gaussian noise of zero mean and variance σ2 = 1. The es-
timated risk R̂ is calculated for ε = 3σ. In Figure 1, we showR and
R̂ as functions of a, averaged over 100 independent trials. Although
R̂ differs slightly from the actual riskR, the values of a where they
attain minima are approximately equal.

2.1. Extension to non-Gaussian distributions

The proposed approach is generalizable to the case where the addi-
tive noise samples wns have zero mean and follow a non-Gaussian
density. In that case, the expression for the riskR becomes

R = P (|a(s+ w)− s| > ε)

= 1− FW
(
ε− (a− 1)s

a

)
+ FW

(
− ε+ (a− 1)s

a

)
,

where FW (w) =
∫ w
−∞ fW (t)dt is the cumulative distribution func-

tion of the additive noise. The risk R̂ can be estimated by replacing
s with its ML estimate x in the expression for R. We consider the
following two cases where the noise distribution is non-Gaussian.
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(a) Student’s-t noise, σ2 = 2.
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(b) Laplacian noise, σ2 = 1.

Fig. 2. (Colour online) Variation of the proposed risk-estimate (av-
eraged over 100 realizations) for Student’s-t and the Laplacian noise
statistics with respect to the shrinkage parameter a. The value of ε
chosen in (a) and (b) is ε = σ.

2.1.1. Case 1

Let us consider the case where wns follow Student’s-t distribution
with parameter λ > 2, that is,

fW (w) =
Γ
(
λ+1

2

)
√
λπ Γ

(
λ
2

) (1 +
w2

λ

)−λ+1
2

.

The variance of noise is given by σ2 = λ
λ−2

. The expression for R
can be obtained by using

FW (w) =
1

2
+ wΓ

(
λ+ 1

2

) F1

(
1
2
, λ+1

2
; 3

2
;−w

2

λ

)
√
λπ Γ

(
λ
2

) ,

where F1(·) denotes the hypergeometric function given by

F1 (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where, in turn, (q)n is defined as

(q)n
∆
=

{
1 for n = 0,

q(q + 1)(q + 2) · · · (q + n− 1) for n > 0.

2.1.2. Case 2

In the case where wns follow an independent zero-mean Laplacian
distribution with parameter b, that is, fW (w) = 1

2b
exp

(
− |w|

b

)
, the

expression for R is computed by setting

FW (w) =
1

2
+

1

2
sign(w)

(
1− exp

(
−|w|

b

))
.

The variance of noise is related to b as σ2 = 2b2.
The actual cost and the risk estimate for the Student-t and Lapla-

cian noise cases is given in Figure 2. From the plots, we observe that
the locations of the optima match closely. Hence, the proposed risk
estimators are reliable and can be used to substitute for the actual
risk.

3. EXPERIMENTAL RESULTS

We deploy the proposed MPE shrinkage estimator for denoising syn-
thesized as well as real ECG signals.

4283



200 400 600 800 1000−4

−2

0

2

4

sample index

am
pl

itu
de

 

 

noisy
clean

(a) Noisy input signal, SNR = 10.00 dB
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(b) SURE-based estimate, SNR = 14.06 dB
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(c) MPE-based estimate, SNR = 25.85 dB
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(d) Noisy input signal, SNR = 5.00 dB
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(e) SURE-based estimate, SNR = 9.05 dB
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(f) MPE-based estimate, SNR = 12.88 dB

Fig. 3. (Colour online) Comparison of denoising performance of the MPE estimator and the SURE estimator for additive Gaussian noise.
The first and second rows correspond to the experiments done with the synthesized signal and the ECG signal, respectively.

3.1. Denoising of synthesized signal

We synthesize a signal sn, 0 ≤ n ≤ N − 1, of the form sn =
cos
(

5πn
N

)
+ 2 sin

(
10πn
N

)
, where N = 1024, and consider the task

of estimating sns from their noisy measurement xn = sn + wn.
We assume that the noise wn corrupting the signal sn are i.i.d. sam-
ples from a Gaussian distribution with zero mean and variance σ2.
A pointwise shrinkage function of the form Ŝk = aXk, where k
denotes the discrete cosine transform (DCT) coefficient index, is
applied to the DCT coefficients of the noisy signal xn, and subse-
quently inverse DCT is computed to obtain the estimate ŝn of the
clean signal sn. The optimum parameter aopt is obtained by mini-
mizing the proposed estimate R̂ of the actual risk over a. Since DCT
is an orthonormal transform, the DCT coefficients of the noise are
also i.i.d. samples following a Gaussian distribution with identical
mean and variance as wn. We carry out the task of denoising for dif-

ferent values of input SNR, defined as SNRin =
1

Nσ2

N−1∑
n=0

s2
n. The

performance of the proposed MPE based estimator is compared with
the standard SURE estimate and the denoised output signals corre-
sponding to SNRin = 10 dB are shown in Figures 3(a), 3(b), and
3(c). We observe that the MPE estimator results in an improvement
of approximately 10 dB in output SNR over the standard SURE-
based estimator.

3.2. Denoising of ECG signal

We next consider the task of denoising real ECG signals corrupted
by additive zero-mean noise following the Gaussian, Student’s-t,

and the Laplacian distribution with known variances. In practice,
the variance can be estimated quite reliably using ML estimators or
median-based robust estimators [18, 19]. The ECG signals used in
our experiment are taken from the PhysioBank database [20]. For the
purpose of denoising, pointwise shrinkage estimate is obtained in the
DCT domain, and the optimum shrinkage aopt is obtained by mini-
mizing the respective MPE risk estimates depending on the noise
statistics. The denoised signals obtained by minimizing MPE and
SURE are shown in Figures 3(d)-(f) and 4(a)-(f), respectively for
Gaussian and non-Gaussian noise statistics. The output SNR values
for the MPE and SURE-based estimates (averaged over 50 indepen-
dent realizations of Gaussian noise) are reported in Table 1, corre-
sponding to various input SNR values.

3.3. Choice of the parameter ε

Appropriate choice of the parameter ε plays an important role in de-
termining the performance of the MPE estimator. It is difficult to
find an expression for the optimum value of ε in closed form that
will lead to maximum SNR in the denoised output signal. We plot
the ensemble-averaged (over 20 trials) output SNR as a function
of ε in Figure 5, for the case where the noise samples follow an
i.i.d. Gaussian distribution. We observe that, for almost all values
of input SNR, output SNR values exhibit a peak approximately at
β = ε

σ
= 3.5 and β = 3, for the synthesized signal and ECG

signals, respectively.
4. CONCLUSION

We proposed an optimum pointwise shrinkage estimator by mini-
mizing a risk function based on the MPE criterion. Our formulation
is applicable to scenarios where the noise samples are independent
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(a) Noisy input signal, SNR = 5.00 dB
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(b) SURE-based estimate, SNR = 9.16 dB
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(c) MPE-based estimate, SNR = 12.69 dB
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(d) Noisy input signal, SNR = 5.00 dB
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(e) SURE-based estimate, SNR = 9.10 dB
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(f) MPE-based estimate, SNR = 12.85 dB

Fig. 4. (Colour online) Comparison of denoising performance of the MPE estimator and the SURE estimator for ECG signals corrupted by
noise following non-Gaussian statistics. The first and second rows correspond to the cases where the noise follows Student’s-t and Laplacian
distributions, respectively. We observed that ε = 3.5σ is optimum.
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Fig. 5. (Colour online) Variation of output SNR (averaged over 50
independent noise realizations) as a function of β = ε

σ
, for different

values of input SNR indicated on the respective plots.

and follow an additive model, but it can handle noise following a
non-Gaussian distribution. We assumed that noise has zero-mean
and its variance is known. As the experimental results show, shrink-
age estimator based on the proposed risk estimate outperforms the
estimator based on MSE minimization using SURE. As an applica-
tion, we considered the task of denoising ECG signals corrupted by
additive noise following various statistical models, to illustrate the
efficacy of the MPE estimator over its SURE-based counterpart. The
improvement in performance in terms of SNR of the denoised output
is attributed to the fact that the MPE framework incorporates knowl-
edge of the distribution of the observations, which goes beyond the
second-order statistics considered in MSE-based optimization.

Input SNR Output SNR Output SNR
(MPE) (SURE)

−5.00 4.76 −0.60

−2.50 6.56 1.80

0 8.65 4.23

2.50 10.83 6.66

5.00 12.92 9.09

7.50 14.88 11.46

10.00 16.93 13.83

12.50 18.62 16.10

15.00 20.21 18.35

17.50 21.69 20.49

20.00 22.98 22.57

Table 1. Comparison of the MPE and SURE estimates for different
values of input SNR (dB). The output SNR values (dB) are averaged
over 50 independent noise realizations; ε = 3.5σ.

Appendix : SURE for pointwise shrinkage estimator

Suppose x = s+w is the noisy observation, wherew has zero-mean
and variance σ2, and ŝ = ax is an estimate of s. MSE of ŝ is defined
as R = E

{
|ŝ− s|2

}
= a2σ2 + (a− 1)2 (E {x2

}
− σ2

)
. An un-

biased estimate ofR is given by R̂ = a2σ2 + (a− 1)2 (x2 − σ2
)
.

Minimizing R̂ with respect to a yields aopt = 1− σ2

x2
.
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