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ABSTRACT

We consider the problem of blind identification and equalization of
a Linear, Time-Invariant (LTI) system, where the input and output
signals, as well as the linear operations, all reside in a finite (Galois)
field. We point out some fundamental differences from the classi-
cal version of this problem. We show that if the input process is a
sequence of independent, identically distributed random variables,
the system is identifiable if and only if the (marginal) distribution of
the input is non-uniform. For an autoregressive (AR) channel a finite
impulse response equalizer can be found by minimizing the marginal
entropy of its output signal. However, an exhaustive search for the
minimizing equalizer, although theoretically possible, is not neces-
sary: Based on somewhat surprising properties of the AR channel’s
output (not shared by the classical case), we show that the equalizer
can be found directly from the empirical characteristic tensor of this
output. We demonstrate the success rate of the proposed methods in
simulation.

Index Terms— Blind Equalization; System Identification; Mov-
ing Average; Autoregressive; Finite Fields; Galois Fields.

1. INTRODUCTION

Blind channel estimation and equalization over the real or com-
plex valued fields is a well-studied topic with applications in diverse
fields, such as communications, speech dereverberation or seismol-
ogy (see, e.g., [1, 2] and references therein), to name just a few. In
the basic classical model, an unobserved source signal, modeled as a
random process with independent, identically distributed (iid) sam-
ples, is presented at the input of a linear, time-invariant (LTI) system
(channel). It is desired to blindly estimate the channel’s parameters
(up to an acceptable scaling ambiguity), usually for the purpose of
equalization. The blindness implies that no additional information
is available on the channel or on the source signal, except for its iid
time structure. This problem is closely related to the problem of In-
dependent Component Analysis (ICA), in which a linear mixture of
independent sources is observed, and it is desired to blindly estimate
the mixing matrix (usually for separating the sources).

In recent years some interest has been taken in considering the
ICA problem in other algebraic fields than the real or complex fields.
The idea was first considered in 2007 [3] in a boolean algebraic
framework, where binary sources were mixed by an “exclusive OR”
(XOR) operation. This new paradigm was later expanded to general
finite (Galois) fields of prime order P (denoted GF(P )) in [4] and of
general (prime power) orders in [5, 6]. While no immediate practi-
cal applications were associated with this problem at first, theoretical
applications have been suggested in the context of eavesdropping on
a Tomlinson-Harashima coded MIMO channel [4, 6] and in the con-
text of Network Coding [7]. Some additional contributions to this
emerging topic were recently published in [8, 9, 10, 11, 12].

An additional natural extension of ICA over finite fields can be
considered in the context of blind channel identification and equal-
ization over finite fields. Admittedly, like in its ICA counterpart,
the current span of prospective applications is rather limited. The
main reason is that LTI systems over finite fields, unlike LTI system
over real or complex fields, are rarely met in nature. Nevertheless,
there are possible contexts in which man-made LTI operations over
finite fields are applied - such as in convolution coding or in network
coding over networks with a cyclic topology. In addition, there are
interesting theoretical aspects to this problem, and as we shall show
in this paper, some of the basic principles are essentially different
from their classical counterparts in the real or complex fields on one
hand, and from principles of ICA over finite fields on the other hand.

Some rudimentary treatment of the problem of filtering over Ga-
lois fields has recently appeared in [13], and also in [14] as exten-
sions of ICA to convolutive mixtures over such fields. However, the
aspects of blind channel identification or equalization in these papers
was limited to heuristic ideas and to empirical testing, mainly using
exhaustive search procedures. In this paper we take a closer theoret-
ical look at to blind identification and equalization over finite fields.
We provide some fundamental theoretical results regarding the sta-
tistical distribution of the channel’s output for rational (moving aver-
age (MA) / autoregressive (AR)) channels and discuss identifiability
conditions. While classical tools of second or higher order statis-
tics are irrelevant in the context of finite fields, one of the remaining
keys for identification, separation and equalization is the (marginal)
entropy of the signals. As we explain later on, the entropy (which
is easy to estimate in a finite field) of an equalizer’s output signal
can serve as a criterion for the success of the attempted equalization.
Since the number of possible equalizers of a given length is finite,
an exhaustive search for the optimal equalizer is theoretically possi-
ble (and, indeed, is advocated in [13, 14]). However, we show that
at least for the equalization of an AR channel, such an exhaustive
search is not necessary, since it is possible to take advantage of spe-
cific properties of LTI AR filtering so as to obtain a direct estimate
of the equalizer.

For simplicity of the exposition, we shall limit the discussion
to finite fields of prime order P , where all the arithmetics in the
field are applied modulu P . When referring to such arithmetics, we
shall denote addition, subtraction and multiplication by⊕,	 and⊗,
respectively; The symbol

∑◦
will be used to denote summation;

Vector and matrix multiplications will be denoted by ◦, e.g., A ◦ b.

2. STATISTICAL PRELIMINARIES: RANDOM
VARIABLES AND RANDOM VECTORS IN GF(P )

A random variable (RV) u in GF(P ) is characterized by a discrete
probability distribution, fully described by a probability vector pu =
[pu(0) pu(1) · · · pu(P−1)]T ∈ RP , whose elements are the prob-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4272



abilities of u taking the respective values. An RV is called uniform if
it takes all values with equal probability 1

P
, and degenerate if it de-

terministic, namely, if it takes a particular value with probability 1.
The entropy of u is given by H(u) = −

∑P−1
m=0 pu(m) log pu(m).

By maximizing the entropy with respect to pu, it is easy to show that
among all random variables in GF(P ), the uniform random variable
has the largest entropy, given by logP .

The characteristic vector of u is denoted p̃u =
[p̃u(0) p̃u(1) · · · p̃u(P − 1)]T ∈ CP , and its elements are
given by the discrete Fourier transform (DFT) of the elements of p:

p̃u(n) = E[Wnu
P ] =

P−1∑
m=0

pu(m)Wmn
P n = 0, . . . , P − 1, (1)

where the “twiddle factor” WP is defined as WP = e−j2π/P (note
that the modulu-P operation is inherently present in the exponential
part, so Wmn

P is equivalent to Wm⊗n
P ). Like the probability vector

pu, the characteristic vector p̃u provides full statistical characteri-
zation of the random variable u, since pu can be directly obtained
from p̃u using the inverse DFT.
The following basic properties of p̃u can be easily shown:

P1. p̃u(0) = 1;
P2. Since pu is real-valued, p̃u(n) = p̃∗u(P − n) (where the su-

perscript ∗ denotes the complex-conjugate);
P3. u is uniform⇔ p̃u(n) = 0 ∀n 6= 0;
P4. u is degenerate⇔ p̃u(n) = WnM

P ∀n;
P5. |p̃u(n)| ≤ 1 ∀n, where for n 6= 0 equality holds if and only

if (iff) u is degenerate.
The characteristic vector of the sum of two statistically independent
RVs is given by the element-wise product of their characteristic vec-
tors, since if w = u⊕ v, then for n = 0, . . . , P − 1

p̃w(n) = E[W
n(u+v)
P ] = E[Wnu

P ]E[Wnv
P ] = p̃u(n)p̃v(n). (2)

For a K × 1 random vector (RVec) u whose elements
u1, . . . , uK are RVs in GF(P ), the joint statistics are fully char-
acterized by the K-dimensional probability tensor (matrix for
K = 2) Pu ∈ RP

(×K)

, whose elements are the probabil-
ities Pu(m1, . . . ,mK) = Pr{u1 = m1, . . . , uK = mK},
m1, . . . ,mK ∈ {0, . . . , P − 1}. Using vector-index notations,
where m = [m1, · · · ,mK ]T , we may also express this relation
more compactly as Pu(m) = Pr{u = m}. The characteristic
tensor P̃u ∈ CP

(×K)

is given by the K-dimensional DFT of Pu,
which, using a similar index-vector notation, is given by

P̃u(n) = E[W nTu
P ] =

∑
m
Pu(m)W nTm

P , (3)

summing over all possible PK indices combinations in m.
The elements of an RVec are statistically independent iff its

probability tensor is the outer product of their probability vectors,
namely Pu(m1, . . . ,mK) = pu1(m1) · pu2(m2) · · · puK (mK).
Equivalently, the characteristic tensor is the outer product of the ele-
ments’ caracteristic vectors. Accordingly, the characteristic tensor of
a vector of iid uniform RVs is all-zeros, except for its 0-th element,
which equals 1.

Similarly to the sum of independent RVs, the characteristic ten-
sor of the sum of statistically independent RVecs is given by the
element-wise product of their characteristic tensors.

If an RVec u = B ◦ v is a linear transformation of an-
other RVec v, their characteristic tensors are related by P̃u(n) =

E[W nTBv
P ] = P̃v(BT ◦ n).

3. RATIONAL (MA AND AR) CHANNELS

Let s[t] ∈ GF(P ) denote a discrete-time random process (the
“source signal”) at the input of a general rational LTI (linear over
the field) channel. Such a channel’s output is given by

x[t] =

M∑◦

m=0

bm ⊗ s[t−m]	
R∑◦

r=1

ar ⊗ x[t− r], (4)

where b0, ..., bM ∈ GF(P ) are the channel’s MA coefficients, and
a1, ..., aR ∈ GF(P ) are its AR coefficients, withM andR denoting
the respective orders. We assume that these orders are “true”, namely
that b0, bM and aR are non-zeros (other coefficients may or may not
be zeros). In addition, to avoid scale ambiguities we shall assume
b0 = 1 as a scaling convention.

When the channel is a pure MA channel (R = 0), (4) amounts
to a Finite Impulse Response (FIR) filtering relation, otherwise (for
R > 0) the channel generally has an Infinite Impulse Response
(IIR). While this is quite similar to the familiar real-valued (or
complex-valued) counterparts, a fundamental difference in the IIR
case in GF(P ) is the absence of any stability issues on one hand, and
the non-decaying nature of the filter’s impulse response on the other
hand. In other words, since the values are taken over a finite field, the
channel’s output is always “bounded”, regardless of the specific AR
coefficients, so such a channel is always “stable” and its impulse-
response never “explodes”; however, it never decays, either: while
a stable linear IIR channel in the real- or complex-valued case can
always be approximated (to arbitrary precision) by a “sufficiently
long” FIR filter, such an approximation is impossible in the finite-
field framework, because there is no notion of “small” (or “large”)
numbers in a finite field, and hence the impulse response cannot be
truncated while maintaining any tolerable approximation.

Nevertheless, such a channel can always be inverted by switch-
ing the roles of the MA and AR coefficients, since the same equation
can also be written as

s[t] =

R∑◦

r=0

ar ⊗ x[t− r]	
M∑◦

m=1

bm ⊗ s[t−m], (5)

with a0 = 1, so with x[t] available for t = 0, 1, ..., and with known
(e.g., zero) initial conditions for both x[−1], x[−2], ..., x[−R] and
s[−1], s[−2], ..., s[−M ], the source s[t] can be fully recovered if
the AR and MA coefficients are known.

Thus, when the MA and AR coefficients are unknown, the ul-
timate goal is to estimate these coefficients from observation of the
output x[t] for t = 0, ..., T−1 with some “sufficiently large” obser-
vation length T . The estimated coefficients may in turn be used to
recover the source signal s[t].

Naturally, without any prior knowledge regarding s[t], such an
estimation problem is ill-posed. To enable a solution, we shall adopt
the common practice of classical blind channel estimation, and as-
sume only that s[t] is a sequence of iid random variables (but their
specific probability distribution is not assumed to be known to the
estimator). One possible key to estimating the coefficients is the
observation that if the random variables s[t] are non-degenerate
and non-uniform, the entropy of x[t] must be larger than that of
s[t]. This is a direct consequence of the fact that the entropy of
the sum (over GF(P )) of any two independent random variables u
and v is always larger than or equal to the entropy of each, namely
H(u⊕v) ≥ H(u), H(u), so thatH(u⊕v) ≥ max{H(u), H(v)},
where equality holds if and only if at least one of these variables
is uniform or degenerate (see [4], Lemma 3). Since multiplication
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by a nonzero constant over the field is bijective and therefore does
not change the entropy, it follows that if s[t] is iid, non-degenerate
and non-uniform, the entropy of any linear combination of two or
more samples of s[t] is larger than the entropy of s[t]. Thus, when
using any estimates of the coefficients â1, ..., âR, b̂1, ..., b̂M to form
an equalizer’s output y[n] as

y[t] =

R∑◦

r=0

âr ⊗ x[t− r]	
M∑◦

m=1

b̂m ⊗ y[t−m] (6)

(with â0 = 1), the resulting entropy of y[t] would always be larger
than or equal to that of s[t], and equality will hold if and only if the
estimated parameters equal the true parameters. This is because the
substitution of any other parameters in (6) implies a residual filter
relating the equalizer’s output y[t] to the source signal s[t].

Given M and R, there is a finite set of PMR possible different
combinations for the MA and AR parameters (all of which lead to a
“legitimate” equalizer, since there are no stability issues), so a the-
oretically plausible approach (partly advocated in [13, 14]) is to run
an exhaustive search over all possible equalizers and pick the one
which yields the minimal entropy. In fact, the theoretical possibility
of such a strategy leads to an identifiability condition:

Theorem 1. Let s[t] be a sequence of iid, non-degenerate random
variables, and let x[t] be given by (4) (with b0 = 1). The parameters
a1, ..., aR, b1, ..., bR can be identified from exact knowledge of the
joint statistics of the process x[t] iff s[t] is non-uniform.

It can be shown that when an LTI channel’s input is an iid, uni-
form sequence, the output is also iid and uniform, regardless of the
channel coefficients (we omit the proof in here, due to space limita-
tions). This means that if s[t] is uniform, x[t] is also iid and uniform,
and therefore might as well be the source signal (and so might any
LTI filtered version thereof), so without additional knowledge the
channel cannot be identified. Conversely, when s[t] is non-uniform,
the channel’s coefficient can be found by looking for the equalizer
which minimizes the output’s entropy (which can be calculated, for
any equalizer, from the full statistical description of its input x[t]).

However, the direct implementation of an exhaustive search ap-
proach (as proposed in [13]) requires to apply each tested equalizer
to the entire data sequence for estimation of the resulting output’s
entropy. This can be prohibitive even for relatively small values of
P ,M andR, if T is very large (as it should usually be for reliable es-
timation). It would be much more efficient to keep some estimated
statistics of the observed data and to estimate the resulting output
entropy of the prospective equalizers’ outputs directly from these
statistics, thereby relieving the estimator from the need to apply each
tested equalizer to the entire signal. As we shall see, a more efficient
strategy exists for AR channels (when looking for MA equalizers).

In order to equalize an AR channel of order R, an MA equalizer
of the same order is required. Let the coefficients of a prospective

equalizer be given by â
4
= [1 â1 · · · âR]T , such that its output y[t]

is given by (6) with M = 0. Given the probability tensor Px of a

vector of R + 1 consecutive samples x
4
= [x[t] x[t − 1] · · · x[t −

R]]T , the probability vector of y[t] can be found as follows. Noting
the relation y[t] = âT ◦ x, the elements of the characteristic vector
of y[t] are given (for n = 0, ..., P − 1) by

p̃y(n) = E
[
W

ny[t]
P

]
= E

[
WnâTx
P

]
= P̃x(n⊗ â) (7)

The characteristic tensor P̃x can be efficiently computed by apply-
ing an (R+ 1)-dimensional FFT to the probability tensor Px.

Evidently, the probability tensor Px is unknown, but can be em-
pirically estimated from the observations x[0], ..., x[T − 1] by look-
ing at all (R+ 1)-tuples, counting their occurrences and dividing by
their total number (which is T −K + 1). The resulting estimate of
the characteristic vector (hence of the probability vector) of y[t] for a
prospective equalizer can then be obtained from (7) with P̃x substi-
tuted by its estimate. The estimated probability vector ˆ̃py can in turn
be used for estimating the entropy of the equalizer’s output and for
selecting the equalizer which minimizes this entropy. Therefore, an
exhaustive search among all PR possible different equalizers can be
accomplished without actually applying each prospective equalizer
to the channel’s output. The resulting performance (in terms of the
probability of selecting the correct equalizer) depends on the quality
of the estimated Px, as well as on the entropy of s[t], which is the
minimum attainable entropy of y[t]. If the entropy of s[t] is close to
logP (namely, if s[t] is nearly uniform), errors in estimating Px are
more likely to cause a false minimum to be selected.

Note that unfortunately this strategy cannot be applied to finding
the AR equalizer to an MA channel, since the relation y[t] = âT ◦
x is replaced with x[t] = b̂

T
◦ y, and there is no direct access

to the characteristic vector of y[t]. Nevertheless, it is possible to
obtain partial knowledge on the characteristic tensor of the vector
y, and to look for the best symmetric rank-1 approximation to this
tensor, since upon successful equalization the elements of y should
be independent and hence their characteristic tensor should admit
a symmetric rank-1 decomposition. Unfortunately, we do not have
sufficient room in here to further elaborate on this approach.

We now propose an alternative option for finding the MA equal-
izer to an AR cannel, which does not involve an exhaustive search.
The proposal is based on the following properties of the output of an
AR channel of order R with a non-degenerate iid input s[n]:

Theorem 2. The asymptotic (t → ∞) distribution of a vector of R

consecutive samples x̄t
4
= [x[t] x[t − 1] · · · x[t − R + 1]]T is

uniform and iid.

Proof. See the Appendix.

This is a somewhat surprising and counter-intuitive result, which
is in fierce contrast to the classical case of real- (or complex) valued
signals: While for a classical AR process all samples are correlated
(and hence statistically dependent), in the case of a finite field every
R consecutive samples are mutually independent. However, every
R + 1 consecutive samples are generally mutually dependent, as
implied by the following Theorem:

Theorem 3. Denote the coefficients vector of the AR process as a
4
=

[1 a1 · · · aR]T . The elements of the characteristic tensor P̃x of the
asymptotic (t → ∞) distribution of a vector of R + 1 consecutive

samples xt
4
= [x[t] x[t− 1] · · · x[t−R]]T are given by:

P̃x(n) =

{
p̃s(m) ∃m|n = m⊗ a

0 otherwise
(8)

Proof. See the Appendix.

In other words, at most P−1 elements (out of PR) of the proba-
bility tensor of x are nonzeros: their indices are multiples of the AR
coefficients vector a, and their values are the respective values of
the characteristic vector s[t]. Note that if the s[t] is uniform, all ele-
ments of its characteristic vector (except for the first, zero-indexed)
are zeros, implying that P̃x is all-zeros as well (except for its 0-th
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element), thus all the elements of x are iid and the AR coefficients
are non-identifiable without additional information. However, if s[t]
is non-uniform, P̃x has at least one nonzero element. A convenient
approach for estimating a is to look for the element with the largest
absolute value in P̃x and to get its index-vector, denoted m. Divid-
ing m (over GF(P )) by its first element m(0), the coefficients vec-
tor a would be readily obtained. Naturally, since P̃x is unknown,
its empirical estimate can be used instead, as described earlier.

4. SIMULATION RESULTS

We tested the two proposed methods for MA equalization of AR
channels: An exhaustive entropy-minimization search and direct es-
timation of the equalizer, both based on the empirical characteristic
tensor of x from T = 40,000 samples. Each trial is either “success-
ful” if the correct equalizer is obtained, or “failed” otherwise. The
methods were tested with different field orders (P ), AR orders (R)
and source distributions. The source distributions assigned a con-
stant probability p1 to all P − 1 nonzero elements and probability

p0 = 1 − (P − 1)p1 to s[t] = 0, with a ratio η
4
= p0

p1
, so as η

approaches 1, s[t] becomes “closer to uniform”. Results are pre-
sented in Table 1 in terms of failures per 1000 independent trials.
The channel’s coefficient of order R were randomly drawn in each
trial. Evidently, the results with the smaller values of P and R and
with η sufficiently far from 1 are perfect for both methods. As ex-
pected, with η = 1 the channel is unidentifiable (cases of success
are coincindencial). In the more difficult cases the exhaustive search
(on the left-hand side in each column) performs better than the direct
estimate (on the right-hand side).

Table 1. MA equalization of an AR channel: Failures in 1,000 trials
P R η = 0.8 η = 0.9 η = 1.0 η = 1.1 η = 1.2

2 8 0|0 0|0 995|995 0|0 0|0
2 17 0|0 0|0 1000|1000 0|0 0|0
3 5 0|0 0|0 995|995 0|0 0|0
3 10 0|0 0|0 1000|1000 0|0 0|0
5 4 0|0 0|0 1000|999 0|4 0|0
5 7 0|0 1|46 1000|1000 4|75 0|0
7 3 0|0 3|61 997|995 5|94 0|0
7 6 0|0 50|565 1000|1000 101|603 0|0

5. APPENDIX

Proof of Theorem 2: Note that x̄t satisfies the recursion
x[t]

x[t−1]
...

x[t−R+1]


︸ ︷︷ ︸

x̄t

=


a1 a2 · · · aR
1 0 · · · 0

0
. . . · · · 0

0 · · · 1 0


︸ ︷︷ ︸

A

◦


x[t−1]
x[t−2]

...
x[t−R]


︸ ︷︷ ︸

x̄t−1

⊕


s[t]
0
...
0


︸ ︷︷ ︸
st

,

(9)
which can be expanded as

x̄t = A ◦ x̄t−1 ⊕ st = A◦2 ◦ x̄t−2 ⊕A ◦ st−1 ⊕ st−2 = · · ·

· · · = A◦K ◦ xt−K ⊕
K−1∑◦

k=0

A◦k ◦ st−k (10)

(where A◦k denotes the k-th power of A over the field) with any
K < t. Since all the RVecs on the last expression in (10) are sta-
tistically independent, the characteristic tensor of x̄t is given by the

element-wise product of the characteristic tensors of these vectors.
The elements of the characteristic tensor of st are evidently given by

P̃s(n) = E
[
WnTst
P

]
= E

[
W

n1s[t]
P

]
= p̃s(n1). (11)

Elements of the characteristic tensor of any linear transformation
w = B ◦ st of st are given by P̃w(n) = P̃s(BT ◦ n), and if
B is non-singular, the elements of P̃w are just a permutation of the
elements of P̃s. Now, since R is the “true” AR order, aR 6= 0,
and therefore the matrix A and all its powers are non-singular. This
means that each non-0-th element of the characteristic tensor of the
sum in the last expression in (10) is a product of K non-0-th el-
ements of the characteristic tensor P̃s, which in turn are simply
non-0-th elements of the characteristic vector of s[t]. Since s[t] is
non-degenerate, the absolute values of all of its non-0-th elements
are smaller than 1. Denoting the largest absolute value of a non-0-th
element of p̃s by λ < 1, we conclude that the absolute values of all
non-0-th elements of the characteristic tensor of x̄t are smaller than
λK (regardless of the characteristic tensor of x̄t−K , which are also
all smaller or equal to 1 in absolute value). Since asymptotically K
can be made arbitrarily large, all non-0-th elements of P̃x vanish,
so that P̃x(0) = 1, and P̃x(n) → 0 for all n 6= 0, and this is
exactly the characteristic tensor of a uniform iid RVec.

However, when looking at R + 1 consecutive samples, the aug-
mented version of the matrix A in (9) would be singular, and this
proof would not hold, since the product of powers of this matrix
with some index-vectors n would yield the 0 index vector. Indeed,
in this case we have the result of Theorem 3.

Proof of Theorem 3: Observe the following, alternative relation:
1 a1 · · · aR
0 1 · · · aR−1

0 0
. . .

...
0 0 · · · 1


︸ ︷︷ ︸

H

◦


x[t]

x[t−1]
...

x[t−R]


︸ ︷︷ ︸

xt

=


s[t]

s[t−1]
...

s[t−R]


︸ ︷︷ ︸

st

⊕


0 0 · · · 0

aR
. . .

. . . 0
...

. . . 0
...

a1 · · · aR 0


︸ ︷︷ ︸

Hc

◦


x[t−R−1]
x[t−R−2]

...
x[t−2R−1]


︸ ︷︷ ︸

xt−R−1

.

(12)

Accordingly, due to the statistical independence between the RVecs
st and xt−R−1 and due to the asymptotic stationarity of xt, the
elements of the characteristic tensor of x satisfy

P̃x(HT ◦ n) = P̃s(n)P̃x(HT
c ◦ n). (13)

Observe that for the P − 1 index vectors of the form n =
[n1 0 · · · 0]T with n1 6= 0 we have P̃s(n) = p̃s(n1) and
P̃x(HT

c ◦ n) = P̃x(0) = 1. Since for such vectors n we also
have HT ◦ n = n1 ⊗ a, we conclude that P̃x(n1 ⊗ a) = p̃s(n1)
for all n1 = 0, ..., P − 1. Next, we observe that (since aR 6= 0) for
any non-0 index-vectors n of a different form, the product Hc ◦ n
yields a non-0 vector whose last element is zero. The characteris-
tic tensor of x at any such index-vector of the form n = [mT 0]T

equals the characteristic tensor of x̄ (the length-R vector) at m,
which according to Theorem 2 is zero for all m 6= 0. Consequently,
P̃x(HT ◦ n) vanishes at any non-0 index-vector n which is not of
the form n = [n1 0 · · · 0]T - which concludes the proof.
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