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ABSTRACT

Sparse component analysis (SCA) is a widely used method

for solving the blind source separation problem. We develop

a new cyclic descent algorithm for SCA based on a dyadic ex-

pansion. To select the associated tuning parameter a method

based on the Bayesian information criterion is developed. In

simulations the new algorithm is compared with state of the

art algorithms from the literature.

Index Terms— Sparse Component Analysis, Sparsity,

Cyclic Descent.

1. INTRODUCTION

Blind source separation (BSS) refers to the problem of esti-

mating the source signals and the mixing matrix of an un-

known linear system whose output is observed. A classical

example is the so-called cocktail party problem where several

microphones are used to record mixtures of conversations at

a gathering and the problem is to isolate individual conversa-

tions (speech signals) from this mixture. Sparse component

analysis (SCA) is a relatively recent method for solving the

BSS problem.

SCA has been successfully applied to solve the BSS prob-

lem in fields such as image processing [5], speech process-

ing [6], sensor array processing [7]. SCA has been discussed

from a theoretical and algorithmical viewpoint in [8, 9].

1.1. Related work

Sparse components analysis (SCA) is originally due to [5]

who solved a version of it with steepest descent algorithms.

The properties of SCA depend on the sparsity penalty. SCA

with an l0 penalty is denoted as SCA0. SCA with an l1 penalty

is denoted as SCA1. [10] develops an approximate maximum

likelihood approach to SCA1; [11] develops an approximate

coordinate descent method for SCA1 and is discussed further

below; [6, 12] expand the signal in a basis and sparsity is ap-

plied to the coefficients. This actually converts the problem

to a reduced rank regression problem [13, 14] and is outside

the scope of this paper. [11] solves the SCA0 problem with
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an approximate cyclic descent method. Finally [15] has de-

veloped an unusual multi-stage iteration called k-SVD which

is also discussed further below.

There are two cases of interest. The overdetermined case

where the number of variables in the model is greater than

number of sources, and the underdetermined case where the

number of sources is greater than the number of variables.

[15] focuses on the underdetermined case, while [11] focuses

on the overdetermined case.

1.2. Paper Contribution

This paper develops a new SCA1 algorithm using a version

of cyclic descent (CD) (aka co-ordinate descent [16]) which

we call dyadic CD. We call the new algorithm SCA1-DCD.

Two tuning parameters need to be specified, the number of

sparse components, and the penalty parameter. A Bayesian

information criterion (BIC) is developed for selecting them.

The paper is organized as follows. In section 2 we intro-

duce the SCA1 model. In section 3 we derive the new esti-

mation algorithm for SCA. In Section 4 the BIC criterion for

tuning parameter selection is presented. Section 5 presents

simulations and compares the new algorithm to competing

methods. Finally, in section 6, conclusions are presented.

1.3. Notation

Matrices are presented by bold face capital letters, e.g. S. The

t-th row vector of S is denoted sTt , the j-th column vector of

S is denoted s(j), and the j, t-th element of S is denoted stj .

The Frobenius norm is denoted as ‖S‖2F =
∑

tj s
2
tj . The

matrix A
−j is equal to A with its j-th column removed.

2. THE SCA1 PROBLEM

The SCA model is given by

yt = Ast + nt, t = 1, ..., T (1)

where yt is a M × 1 vector of observed data A is an

M × r mixing matrix, st is a r × 1 source vector, and

nt ∼ N(0, σ2IM ) is a noise vector. The signals and mixing

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4267



matrix are estimated by minimizing the following penalized

least squares criterion

J(A,S) =
1

2
‖Y − SAT ‖2F + h

∑

t,j

|stj |

=
1

2

T
∑

t=1

‖yt −Ast‖2 + h
∑

t,j

|stj | (2)

where Y = [yT
t ], and S = [sTt ] = [s(j)] = [stj ]. There is

a permutation and sign indeterminacy. This can be seen by

noticing that for a r × r permutation matrix P , S̃ = SP T

and Ã = AP T we have S̃Ã
T

= SAT and
∑

tj |s̃tj | =
∑

tj |stj |. The sign indeterminacy can be demonstrated simi-

larly.

3. DYADIC CYCLIC DESCENT

The estimates are given by

Â, Ŝ = argminJ(A,S)
s.t. ‖a(j)‖2 = 1, j = 1, ..., r.

(3)

The unit norm constraint on the columns of A serves the pur-

pose of ensuring that we do not get estimates where A → ∞
and S → 0 while SAT is fixed.

There is no closed form solution to this optimization prob-

lem and so we develop a cyclic descent (CD) procedure. A

natural approach would be a two stage approach:

A-step: given S update A;

S-step: given A update S.

However we have found a different approach to be much

faster. We recall the dyadic expansion

SAT =
r
∑

j=1

s(j)a
T
(j)

This leads to a r-step CD as follows. For j = 1, ..., r given

S
−j,A

T
−j update

a
(k+1)
(j) = arg.mina Jj(a, s

(k))

s
(k+1)
(j) = arg.mins Jj(a

(k+1)
(j) , s)

where

Jj(a, s) =
1

2
‖Rj − saT ‖2 + h‖s‖1

Rj = Y − S
−jA

T
−j .

3.1. The mixing vector a(j)-step

The a(j)-step consists of minimizing

a
(k+1)
(j) = arg.mina

1
2‖Rj − s

(k)
(j)a

T ‖2
s.t. ‖a(j)‖2 = 1, j = 1, ..., r.

(4)

Simple application of the Lagrange multiplier theory yields

the solution

a
(k+1)
(j) =

RT
j s

(k)
(j)

‖RT
j s

(k)
(j)‖

.

3.2. The source vector s(j)-step

The s(j) step is equivalent to minimizing

s
(k+1)
(j) = arg.mins

1

2
‖Rj − sa

(k+1)T

(j) ‖2 + h
∑

tj

|sjt| (5)

This problem is a simple version of the LASSO [2] optimiza-

tion problem and has the soft-thresholding solution

s
(k+1)
tj = max(|btj | − h, 0)sgn(btj), t = 1, ..., T. (6)

where B = [btj ] = RjA.

Here we discuss the precise relation between our algo-

rithm and those of [11, 15]. sPCA-rSVD [11] also makes use

of the dyadic expansion. The first step of [11] is the same as

our first step. But in sPCA-rSVD [11] further terms are fitted

sequentially so that a full CD is not implemented. This means

that the procedure does not converge and that it exhibits infe-

rior performance. This is illustrated in the simulations below.

Algorithm [15] takes the traditional two stage CD ap-

proach but with a twist in the A update. Here a dyadic

approach is used but in a very different way to ours. A is

updated one column at a time. Each update involves a rank

1 singular value decomposition (SVD) but is preceded by a

sparsity projection. This means that k-SVD is not a true CD

algorithm which is also demonstrated below.

4. TUNING PARAMETER SELECTION

To select the number of components r and the penalty param-

eter h we use the BIC criterion [17]

BICr,h = M log(
‖Y − ŜÂ‖2F

TM
) + (ns +Mrs − r2s)

log T

T
(7)

where ns is the number of nonzero parameters in Ŝ and rs is

the rank of S. We select the tuning parameters that minimize

the BICr,h surface.
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5. EXAMPLES

In this section we evaluate the performance of SCA1-DCD vs

the k-SVD algorithm [15] and sPCA-rSVD [11]. We use two

performance metrics: the normalized MSE (nMSE) which is

given by

nMSE =
‖SAT − ŜÂ

T ‖2F
‖SAT ‖2F

and the average angle distance (AD) between the columns of

the mixing matrix A which is given by

AD(A, Â) =
1

r

r
∑

j=1

arccos(aT
(j)â(j)).

Since there is permutation and sign indeterminacy in A, the

columns of A and Â were matched before computing AD.

Since the development in [11] was focused on the overdeter-

mined case M > r and the underdetermined M < r case in

[15] we present two examples focusing on those two cases.

5.1. Example 1 (Over-Determined Case)

The data is simulated according to (1) where the mixing ma-

trix A is selected as an M × r matrix where M = 100
and each element is drawn from a Gaussian distribution with

zero mean unit variance. After creation A is scaled so that

‖A‖F = 1. The T × r source matrix S is created by con-

structing S = S̃D where D = diag(d1, d2, ..., dr) and S̃

is a vector of zeros and ones where we set fS as the frac-

tion of active (nonzero) elements. The noise variance σ2 is

selected according to pre-specified signal to noise variance

(SNR) where

SNR = 10 log10

(

‖SAT ‖2F
TMσ2

)

.

In the simulation examples below we examine the perfor-

mance of SCA1-DCD with respect to k-SVD [15] and sPCA-

rSVD [11]. The performance w.r.t. SNR, sparsity and rank is

investigated.

5.1.1. Performance w.r.t. SNR

Here we fix the number of components to r = 2, D =
diag(

√
400,

√
300) and the fraction of active elements to

fS = 0.2. The performance w.r.t. SNR is evaluated where

SNR = (0.73,−6.66,−9.22,−10.56). For each SNR level

we generated A once and then Y according to model (1) 100

times. For SCA1-DCD and sPCA-rSVD we use BIC to select

the penalty parameter h. Fig 1 shows an example of BIC

for SCA1-DCD. Fig. 2 show median AD and median nMSE

w.r.t. SNR. SCA1-DCD performs the best both in terms of

AD and nMSE and sPCA-rSVD the second best.
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Fig. 1. Example 1 performance w.r.t. SNR. An example of

the BIC surface for selecting the penalty parameter h. The

minimum is at r = 2, h = 0.29.
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Fig. 2. Example 1 performance w.r.t. SNR, (a) median AD

(degrees) vs SNR. (b) median nMSE vs SNR.

5.1.2. Performance w.r.t. sparsity

The number of components and D are selected as before

but SNR = −6.66. The sparsity is varied such that fS =
(0.1, 0.2, 0.3, 0.4). Fig. 3 show AD and nMSE w.r.t spar-

sity. For each sparsity level we generated A once and then Y

according to model (1) 100 times. Again SCA1-DCD outper-
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Fig. 3. Example 1 performance w.r.t. sparsity, (a) median AD

(degrees) vs sparsity. (b) median nMSE vs sparsity.

forms the other methods by large margin. We note that the

performance of SCA1-DCD and sPCA-rSVD do not seem to

depend much on the sparsity.
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5.1.3. Performance w.r.t. rank

The signal to noise ratio is set at SNR = 0.73 and the

fraction of active elements fS = 0.2. The performance

w.r.t. rank is evaluated where r = 2, 3, 4, 5 and di =
√

100(r − i+ 1) + 200. For each rank level we generated

A once and then Y according to model (1) 100 times. Fig

4 show AD and nMSE w.r.t. rank. Yet again SCA1-DCD
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Fig. 4. Example 1 performance w.r.t. rank, (a) median AD

(degrees) vs rank. (b) median nMSE vs rank.

outperforms the other methods. The performance of all the

methods diminishes with increasing rank.

5.2. Example 2 (Under-Determined Case)

The data is simulated according to (1) where the mixing ma-

trix A is selected as an M × r matrix where M = 20 and

r = 30. Each element of A is drawn from a Gaussian distri-

bution with zero mean unit variance. The source matrix S is

T×r whereT = 1500. In each row of S there are 1 ≤ T0 ≤ 3
nonzero elements which are drawn from a N(0, 1) distribu-

tion. Fig. (5) shows the performance of the methods with

respect to SNR. For each SNR value the simulation is per-

formed 100 times. Here we see that SCA1-DCD outperforms

k-SVD. sPCA-rSVD fails relative to the other methods in this

case.
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Fig. 5. Example 2 performance w.r.t. SNR, (a) median AD

(degrees) vs SNR. (b) median nMSE vs SNR.

5.2.1. Convergence Speed

Fig. 6 shows the optimization criterion for k-SVD SCA1-

DCD and sPCA-rSVD vs iterations. Fig. 6 (a) shows SCA1-

DCD vs sPCA-rSVD. SCA1-DCD clearly has the faster con-

vergence. It can also be seen that sPCA-rSVD does not con-

vergence. Fig. 6 (b) shows the k-SVD criterion vs iteration.

In fact the criterion for k-SVD increases slightly at various

places (Fig. 6 (c)) while the SCA1 criterion is nonincreas-

ing w.r.t iteration (since it is a CD method). We note that the

computation time per iteration is smallest for sPCA-rSVD,

slightly more for SCA1-DCD but much more for kSVD. This

is reflected in the computation times for generating the plots

in Fig. 5. The computation time for kSVD was 29.34 sec-

onds, 1.03 seconds for sPCA-rSVD, and 2.0794 seconds for

SCA1-DCD.
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Fig. 6. Criterion vs iterations for (a) SCD1-DCD and sPCA-

rSVD, (b) k-SVD and (c) k-SVD (closeup).

6. CONCLUSIONS

In this paper we have developed a new algorithm for the l1
penalized sparse component analysis problem. The algorithm

uses a new form of cyclic descent which we call dyadic cyclic

descent. We also developed an automatic method for select-

ing the two tuning parameters involved: the penalty parameter

and the number of sparse components. In simulations the per-

formance of SCA1-DCD was evaluated under various settings

and shown to outperform the k-SVD method and the sPCA-

rSVD method.
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