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ABSTRACT

Principal component analysis (PCA) is a widely used signal process-
ing technique. Instead of performing PCA in the data space, we con-
sider the problem of sparse PCA in a potentially higher dimensional
latent space. To do so, we zero-out groups of variables using vector
`0 regularization. The estimation is based on the maximization of
the penalized log-likelihood, for which we develop an efficient cou-
pled expectation-maximization (EM) - minorization-maximization
(MM) algorithm. For the special case when the latent- and observa-
tion space are identical, our method corresponds to an existing vector
`0 PCA method, which we verify using simulations. The proposed
method can also be utilized for penalized linear regression and we
use simulations to demonstrate superior estimation performance. As
an example of a practical application, we use our method to localize
cortical activity from magnetoencephalography (MEG) data.

Index Terms— principal component analysis, PCA, minorization-
maximization, penalized likelihood, sparsity, l0, MEG, EEG, source
localization

1. INTRODUCTION

In the noisy PCA (nPCA) problem [1, 2, 3], the signal model is given
by

yt = Fut + εt, t = 1, . . . , T, (1)

where yt ∈ RM are the observations at time t, ut ∼ N (0, Ik) is a
white noise basis, and εt ∼ N

(
0, σ2IM

)
is additive noise. The goal

of nPCA is to estimate the M × k loading matrix F and the noise
variance σ2. In [2, 3] an Expectation Maximization (EM) algorithm
[4] was developed to obtain maximum likelihood (ML) estimates of
F and σ2. However, when the number of time points T is small and
M is large, the ML approach exhibits poor estimation performance.
In [5] a sparse variable PCA (svnPCA) approach with a vector `0
penalty to zero-out rows in F was introduced. The vector `0 penalty
can greatly improve the quality of the estimation in the “large M
small T ” setting when only a subset of variables contain the signal
of interest. In this work, we consider an extension of nPCA. Namely,
we assume the following signal model

yt = GFut + εt, t = 1, . . . , T, (2)

where G ∈ RM×N is a known matrix and the loading matrix F now
has dimension N × k. Note that a related problem is encountered
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in regression where one is interested in estimating X = [x1 · · ·xT ]
from

yt = Gxt + εt, t = 1, . . . , T. (3)

For the regression problem, it has been established that X can be es-
timated with high accuracy even in the underdetermined case when
M � N using `p-norm regularized regressions with p ≤ 1 as long
as each xt is sparse, i.e., has a small number of non-zero entries,
and G has certain properties [6, 7]. For the case where each xt

has non-zero elements at the same locations, the recovery can be
improved by jointly estimating X, such as in the Group Lasso algo-
rithm [8] which uses an `1`2-norm penalty (`1-norm of the `2 norm
of all rows in X). While the problem is convex for p = 1, superior
estimation quality can be achieved using vector `0 penalized regres-
sion [9]. Also Bayesian methods [10] provide high quality solutions
and it can be shown that they solve an approximation to the `0-norm
regularized problem [11].

In this work, we use a penalty function that is closely related to
the vector `0 penalty in svnPCA0 [5]. The penalty is given by

ρ (F) =
∑
v∈V

I (Fv 6= 0) , (4)

where I (·) is the indicator function, i.e., I (Fv 6= 0) = 0 only
if Fv = 0 and I (Fv 6= 0) = 1 otherwise, V is a set of non-
overlapping groups of row indices, and Fv is an |v| × k sub-matrix
of F obtained for the indices in v. This formulation allows us to
encode prior knowledge about the relationship between variables as
the penalty forces entire groups to become exactly zero, not individ-
ual loadings as it would be the case with a scalar `0 penalty, this is
why we call it a vector `0 penalty. The estimation procedure is based
on the maximization of the penalized log-likelihood, for which we
develop an efficient coupled EM-MM algorithm [12, 13]. The al-
gorithm has several interesting properties. First, for the case where
G = I and M = N , it is identical to the penalized EM algorithm
from [5] and in simulations we show that both algorithms indeed ob-
tain the same solutions. Second, even when G 6= I, the maximiza-
tion step in our MM algorithm has a closed form solution, which
allows us to efficiently update F during each iteration.

Of interest is the underdetermined case when the latent space
has a higher dimension than the observation space, i.e., M � N .
Unlike for the regression problem, no theoretical results on recov-
ery guarantees currently exist for latent space PCA. However, we
show that our algorithm can also been utilized to solve the regres-
sion problem. Specifically, we can estimate F and then obtain an
estimate x̂t = Fût, where ût is the conditional expectation of ut

given Y = [y1 · · ·yT ], F and σ2. We use simulations to show that
our method provides a better reconstruction performance than exist-
ing penalized regression methods, especially for the case where the
active rows in X are linearly related, which is not taken into account
by existing methods.
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Source localization in magneto- and electroencephalography
(M/EEG) is a practical application where grouping variables, as
in (4), and the assumption of linear relations between rows of X
is sensible. For this application, G is a gain matrix describing
the relation between N fixed-orientation current dipoles distributed
over the cortical mantle and the measurements at M sensors [14].
For M/EEG, row-sparsity in X means that only a small number of
cortical sites are active, which is a valid assumption for many exper-
imental paradigms and `1`2-norm (“mixed norm”) penalized source
localization methods [15, 16] can provide accurate localization of
the active sources. The proposed method also lends itself to M/EEG
source localization and we demonstrate its application to MEG data.
A potential benefit over, e.g, `1`2-norm regularization is that the
proposed method can model the activity at one cortical location
using a small number of basis signals. This is the case since a single
location contributes multiple rows to F corresponding to current
dipoles at the same location but with different spatial orientations.

The method presented in this work builds on our previous work
[17], where we developed a similar method with a vector `1 penalty
for F. However, in [17] we motivated the problem from a regression
perspective and did not consider the application of the method to
latent space PCA. For regression, the use of the vector `0 penalty in
the current work improves the estimation quality when compared to
our previous method, which we demonstrate using simulations.

This paper is organized as follows: In Section 2, the proposed
method is introduced. In Section 3 we evaluate the performance of
the proposed method using simulations. The method is applied to
MEG data in Section 4 and finally, the paper is summarized and
conclusions are drawn in Section 5.

2. PROPOSED METHOD

We estimate F and σ2 by maximizing the penalized log-likelihood
which we obtain from (2) by marginalizing over ut, computing the
logarithm, and combining it with the regularization term (4), result-
ing in

L (F) = −1

2
tr
(
SyΩ−1)− 1

2
|Ω| − h

2σ2
ρ (F) , (5)

where Ω = σ2IM + GFFTGT , Sy = 1/T
∑T

t=1 yty
T , and h is

the regularization parameter. Due to the form of (5), a direct max-
imization with respect to F is difficult and we follow the same ap-
proach as in [17] and develop a coupled EM-MM algorithm to per-
form the maximization. First, we compute the penalized complete
data log-likelihood using

LY,U (F) =
1

T
E

[
T∑

t=1

ln p
(
yt,ut|F, σ2)]− h

2σ2
ρ (F) , (6)

where the expectation is computed with respect to

p
(
ut|yt,F, σ

2) = N (W−1FTGTyt, σ
2W−1

)
, (7)

where W = σ2Ik + FTGTGF. Which gives

LY,U (F) =− tr (Sy)

2σ2
+

tr
(
FΓT

)
σ2

(8)

−
tr
(
FAFTGTG

)
2σ2

− M

2
lnσ2 − h

2σ2
ρ (F) ,

where

Γ = GTSyGFW−1, (9)

A = W−1
(
σ2W + FTGTSyGF

)
W−1. (10)

Notice that LY,U (F) minorizes L (F); this minorization provides
the basis of the well-known Expectation Maximization (EM) algo-
rithm [4], which maximizes (5) by iteratively updating W, A, and
Γ in the E-step and maximizing (8) with respect to F and σ2 in the
M-step. Surprisingly, for the svnPCA0 algorithm [5], the M-step has
a closed form solution. However, due to the presence of G this is not
the case here and the maximization of (8) with respect to F remains
challenging. Therefore, we introduce a functional which minorizes
the penalized EM functional (8) (and hence also minorizes (5)) in
order to obtain a tractable optimization procedure.

First, we introduce the deviation F̃ = F−F0 and rewrite (8) as
follows

LY,U (F) = − 1

2σ2
tr (Sy) +

1

σ2
tr
(
F̃ΓT

)
− 1

2σ2
tr
(
F̃AF̃TGTG

)
− 1

2σ2
tr
(
F̃AFT

0 GTG
)

− M

2
lnσ2 − h

2σ2
ρ (F) + c, (11)

where all terms solely depending on F0 have been absorbed into
the additive constant. We now use the maximum eigenvalue λ =
λmax

(
GGT

)
to minorize LY,U (F) as follows

m (F,F0) = −
1

2σ2
tr (Sy) +

1

σ2
tr
(
F̃ΓT

)
− λ

2σ2
tr
(
F̃AF̃T

)
− 1

2σ2
tr
(
F̃AFT

0 GTG
)
− M

2
lnσ2 − h

2σ2
ρ (F) + c, (12)

for which we have m (F,F0) ≤ LY,U (F) where equality only
holds if the deviation is zero, i.e., F = F0 and therefore m (F,F0)
is a minorizing functional. We now expandm (F,F0) and absorb all
terms not depending on F or σ2 into the additive constant resulting
in the following MM objective function

J (F) =− 1

σ2
tr
(
FKT

)
+

λ

2σ2
tr
(
FAFT

)
(13)

+
1

2σ2
tr (Sy) +

M

2
lnσ2 +

h

2σ2
ρ (F) + c

where the k ×N matrix KT is given by

KT = ΓT + AFT
(
λI−GTG

)
. (14)

Notice that (13) we multiplied all terms with−1 and therefore the F
and σ2 parameters in the maximize step are obtained by minimizing
(13). To do so, it is important to realize that (13) is separable in F,
i.e., we can rewrite it as follows

J (F) =
∑
v∈V

jv (Fv) +
1

2σ2
tr (Sy) +

M

2
lnσ2 + c, (15)

where

jv (Fv) =−
1

σ2
tr
(
FvKT

v

)
+

λ

2σ2
tr
(
FvAFT

v

)
+

h

2σ2
I (Fv 6= 0) , (16)
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where KT
v is an k × |v| matrix obtained from KT by concatenat-

ing the columns in the index set v. The separability allows us to
minimize (13) with respect to F by minimizing each jv (Fv) with
respect to Fv separately. Due to the non-differentiability of I (·),
care must be taken when performing the minimization. First, note
that for Fv = 0 we have jv (Fv) = 0 while for all other values the
objective function is given by

jv (Fv) =−
1

σ2
tr
(
FvKT

v

)
+

λ

2σ2
tr
(
FvAFT

v

)
+

h

2σ2
if Fv 6= 0. (17)

As I (·) is only non-differentiable at zero, we can minimize (17) by
computing the derivative with respect to Fv and equating to zero. By
doing so and by comparing the value of the objective function with
the value when Fv = 0, we obtain the following minimizer

F∗v = KvA−1I

(
h <

1

λ
tr
(
KvA−1KT

v

))
. (18)

To minimize (13) with respect to σ2, we compute the derivate and
equate to zero, resulting in

(σ2)
∗ =

1

M

[
λtr
(
FAFT

)
− 2tr

(
FKT

)
+ a
]
, (19)

where a = tr (Sy) + hρ (F) and we use the F obtained in the
previous iteration.

To summarize the algorithm: In the minorize-step, we compute
W, Γ, A and K and in the maximize-step we update F and σ2 using
(18) and (19), respectively. When the algorithm is used for regres-
sion, we use the conditional expectation of ut from (7) to obtain

x̃t = FW−1FTGTyt. (20)

Finally, we point out an interesting connection to the svnPCA0
method [5]. Namely, for the case G = I, we have γ = 1 and
JMM (F) = LY,U (F), i.e., our EM-MM algorithm is equivalent
to the EM algorithm from [5], which can therefore be considered a
special case of the EM-MM algorithm developed here.

3. SIMULATION RESULTS

Sparse Variable PCA: In a first simulation, we consider the nPCA
case where G = I. In this case, our method is equivalent to svn-
PCA0 [5]. To verify this fact, we compare our method to an im-
plementation of svnPCA0 and perform an experiment similar to the
ones in [5]. Specifically, we generate data with M = 1024, T =
100, k = 10, where the true loading matrix has 400 non-zero rows
and is given by F =

[
VSUT , 010×624

]T
, where V, and U are

random orthonormal matrices with size 400 × 10 and 10 × 10, re-
spectively. The matrix S is diagonal with entries 502, 452, . . . , 52.
This loading matrix is then used with (1) to generate observations
with σ2 = 5002. We then test the detection performance of svn-
PCA0 and the proposed method (`0-LSPCA) by using 50 logarith-
mically spaced regularization parameter settings in the range 103 to
106 and for each setting, we perform 20 simulations to compute the
true positive rate (TPR) and false positive rate (FPR) from the esti-
mated support of each method. As in [5] the proposed method and
svnPCA0 are both initialized using the ML solution. As a reference,
we also include the variance sorting procedure described in [5], for
which the support is estimated by simply computing the variance

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8
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R

`0-LSPCA
svnPCA0
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Fig. 1: ROC curves for the proposed method (`0-LSPCA), svn-
PCA0, and the sorting procedure.

σ2
i =

∑T
t=1(yt)

2
i and applying a threshold. By doing so, we com-

pute a receiver operating characteristic (ROC) curve for each algo-
rithm, shown in Fig. 1. As expected, the proposed method and svn-
PCA0 give virtually identical results. Small differences are due to
slightly different implementations and numerical accuracy. It should
be pointed out that while the methods give the same results, svn-
PCA0 is computationally more efficient in this case as the proposed
method takes into account G which leads to unnecessary multiplica-
tions.

Sparse Regression: In this experiment, we apply the proposed
method to the regression problem and compare its performance to
penalized regression methods which estimate X directly. The for-
ward operator G is obtained from a uniform spherical ensemble,
i.e., the columns of G are drawn from a uniform distribution on the
M -sphere with radius 1. The true signal X of size 200×100 is gen-
erated using X = UV, where U is a 200 × 5 matrix with 10 ran-
domly selected non-zero rows for which we draw the entries from a
zero-mean normal distribution with unit variance, and V is a 5×100
matrix with elements draw from the same distribution. We generate
observations using (3) with a noise variance such that the signal-
to-noise ratio (SNR) is 10dB (SNR = 10 log ‖GX‖2F/(TMσ2)).
We include the following methods in the comparison: The proposed
method (`0-LSPCA) for which we use h = 1.0 and supply the al-
gorithm with the true noise variance σ2 instead of trying to estimate
it from the data, which is known to work poorly for sparse regres-
sion problems [10]. Due to the non-convexity of our method, a good
starting point is important. We find that the method performs well
when initialized using our previously developed `1 based method
[17], which we also include in the comparison (`1-LSPCA) also with
h = 1.0 and the true noise variance supplied to the method. For both
the proposed method and `1-LSPCA, we use 3 settings for the pa-
rameter k, namely 5, 10, and 25. In addition, we also include `1`2-
norm penalized regression in the comparison, for which we selected
the regularization parameter by running the algorithm for a large
number of values and retaining the one yielding the best over-all per-
formance, which was α = 0.06∗αmax, where αmax is the `∞`2-norm
of GTY [18]. To reduce the bias introduced by the `1 norm, it is
common to use the `1`2-norm penalized method to detect the support
and then compute a least-squares solution for the support. We also
include this method (`1`2 support) with α = 0.22 ∗ αmax. Finally,
we include the M-SBL method [10], which is a Bayesian method for
estimating X. The M-SBL method is supplied with the true noise
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variance, which results in a high reconstruction performance for the
scenarios considered here.

The reconstruction error ‖X̂−X‖2F/‖X‖2F when the number of
observations M is varied is shown in Fig. 2. The proposed method
clearly provides superior results. It is interesting to note that `1-
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Fig. 2: Reconstruction error versus the number of observations M ,
X contains 10 non-zero rows and rank (X) = 5. Results are aver-
ages over 100 simulations.

LSPCA performs best when k = 5 = rank (X) but the recon-
struction quality decreases when k is increased, while the proposed
method exhibits the same high estimation quality regardless of the
setting for k. This difference is likely due to the bias introduced by
the `1-norm in `1-LSPCA.

4. APPLICATION TO MEG DATA

Sparse regression methods have proven their utility in localizing cor-
tical sources from magnetoencephalography (MEG) data [15, 16].
In this section, we apply the proposed method to this problem us-
ing a publicly available dataset, which is part of the MNE software
[19]. The data is from an experiment where a pure tone was applied
to the left ear of the subject and was acquired using a 306-channel
Elekta Neuromag Vectorview MEG system using a sampling rate of
600Hz. The MNE software was used to preprocess the data as fol-
lows: omitting one channel due to artifacts, 40Hz low-pass filtering,
computation of an evoked response by averaging 63 trials from 0ms
to 300ms after stimulus onset (T = 181). The gain matrix G of
size 305 × 22494, corresponding to 7498 evenly distributed loca-
tions on the neocortex with three orthogonal current dipoles at each
location, was computed using a subject specific boundary element
model (BEM). Finally, a noise covariance matrix was estimated from
200ms data segments prior to the stimulus onset, which was used to
whiten the evoked response and the gain matrix. The gain matrix
was scaled by a factor of 10−8, as the dipoles typically have small
magnitudes in the order of a few nAm.

We use our `1-norm based method [17] with h = 200, σ2 =
1, k = 5, to obtain an initial solution for the proposed method.
The regularization parameter value was chosen smaller than in [17]
in order to obtain a larger number of active dipoles in the initial
solution (423 total.). The proposed method was then applied using
h = 1000, σ2 = 1, k = 5, resulting in a solution with 18 active
dipoles corresponding to 6 locations located in the contralateral and
ipsilateral auditory cortices. Note that for both methods, the three
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Fig. 3: MEG results: Dipole locations (left) and dipole magnitudes
obtained by combining the 3 spatial components (right). The corre-
sponding dipole location and magnitude are shown in the same color.

dipoles belonging to a single spatial location were grouped together,
i.e., we used |V| = 7498, |v| = 3 ∀ v ∈ V , which means the dipoles
at the same location will be jointly active or inactive.

Results are shown in Fig. 3. When compared to the results
shown in [17] where we used our previous `1-norm penalized
method, the proposed method was able to remove spurious dipoles
in the right hemisphere. Furthermore, the dipole magnitudes es-
timated by the proposed method are significantly larger and more
equal between the left and right hemispheres. Importantly, the activ-
ity in the right hemisphere, contralateral to the stimulus, is stronger
and earlier than that in the ipsilateral left hemisphere.

5. CONCLUSIONS

In this work we introduce a method for sparse variable principal
component analysis (PCA) in latent space. The method uses a vec-
tor `0 penalty to zero-out groups of variables, which enables it to
work even for the case when the latent space is higher dimensional
than the data space. We base our method on the maximization of the
penalized log-likelihood, for which we derive a coupled EM-MM
algorithm. Interestingly, the maximization step has a closed-form
solution, which allows for efficient computation. Another interest-
ing property is that for the special case when the latent- and data
space are identical, our method is equivalent to an existing vector `0
penalized PCA method that operates in data space [5] and we use
simulations to demonstrate the equivalence.

A problem related to the one considered here is underdetermined
regression, as encountered in, e.g., compressive sensing [7]. We
used simulations to demonstrate that our method can also be ap-
plied to this problem and provides a superior estimation quality when
compared to existing methods. As a practical example, we applied
our method to the problem of localizing cortical sources from mag-
netoencephalography (MEG) data, where it correctly localizes the
sources and provides a solution with reduced amplitude bias when
compared to previous results [17].

It is important to note that while we empirically demonstrate that
our method performs well even in the underdetermined case, no the-
oretical results currently exist that establish performance guarantees,
as it is the case for regression [7]. Furthermore, the regularization
parameter h and the parameter k were heuristically selected in this
work. For the case when G = I, the parameters can be chosen using
the Bayesian information criterion (BIC) [5]. Parameter selection
and a theoretical analysis will be addressed in future work.
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