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ABSTRACT

There are two main approaches to independent component

analysis (ICA); maximization of non-Gaussianity of the

sources and the exploitation of temporal correlation in Gaus-

sian sources. In this paper, we present a novel sparse noisy

ICA model where we have introduced temporal correlation in

the sources, described by a first order auto regressive (AR(1))

process. The correlation structure of the sources eliminates

the rotational invariance of the estimates, enabling their sep-

aration. Using simulated data, we demonstrate both source

separation and denoising, where we compare our results to a

sparse PCA method and the fastICA method. Additionally,

we apply the method on a real hyperspectral dataset.

Index Terms— Independent Component Analysis, Spar-

sity, Noisy Principal Component Analysis, Source Separa-

tion, Denoising

1. INTRODUCTION

Principal component analysis (PCA) [1], also known as the

Karhunen-Loeve expansion, plays an important role in signal

processing, e.g., for exploratory signal analysis and dimen-

sionality reduction. PCA decomposes a signal into principal

components (PCs) which are orthogonal and ordered accord-

ing to their variance. The first PC explains most of the vari-

ance of the signal, while the next PC is orthogonal to the first

PC and explains second most of the variance of the signal,

and so on.

For PCA there is an underlying signal processing model

[2],[3] called noisy PCA (nPCA). Recent generalizations of

nPCA are, e.g., smooth nPCA [4] and sparse variable nPCA

(svnPCA) [5]. The main idea of svnPCA is the incorporation

of a sparseness vector penalty for automatic variable selec-

tion. This is achieved by maximizing a vector ℓ0 penalized

log-likelihood function using the Expectation-Maximization

(EM) algorithm [6],[7].

Independent component analysis (ICA) [8] is a technique

to separate mixed signals (sources) based on their statisti-

cal independence. There are two main approaches to ICA.

One is the maximization of the non-Gaussianity of the esti-

mated sources and the other approach is to exploit sample de-
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pendence in Gaussian sources, i.e., that the samples of each

source are correlated. Methods that fall into this category are

called Gaussian noisy ICA [9].

The main contribution of this paper is a novel sparse

Gaussian noisy ICA method, where the sources (PCs) are

assumed to have temporal correlation which is described by

a first order auto regressive (AR(1)) process. The model is

related to the svnPCA model, however, the source estimates

in svnPCA are invariant under rotation, making separation

impossible. The correlation structure of the sources in the

new method eliminates the rotation invariance and makes the

sources separable.

A further generalization of the model is achieved by as-

suming that the signal under study is sparse when expressed

in a basis such as the orthogonal wavelet basis, which is the

choice of basis in this work. We call the new method sparse

Gaussian noisy ICA (sgnICA).

The proposed method is demonstrated using simulated

data and we compare its source separation and denoising

performance to the sparse PCA (sPCA) method presented in

[10] and the fastICA [11] method.

In the sPCA method, the data is transformed to a basis in

which the PCs are sparse, using the orthogonal wavelet trans-

form. In [10], it is shown that the PCs can be consistently

estimated by restricting the PCA to a subset of the variables

with variances above a threshold. Instead of adaptively select-

ing the threshold, the top k variables are chosen according to

their variance. The next step is performing reduced PCA on

this subset, retaining the leading r PCs. Finally, the data is

reconstructed using the inverse PCA transform and returning

to the original basis via the inverse wavelet transform.

The organization of the paper is as follows. In Section

2 we derive the sgnICA algorithm. In Section 3 we discuss

parameter selection for the proposed method. Section 4 de-

scribes the experiments using simulated data and in Section 5

we present denoising of a real hyperspectral remote sensing

dataset. Finally, conclusions are drawn in Section 6.

2. THE sgnICA MODEL

The sgnICA model is given by

yt = Gut + ǫt (1)

ut = ρut−1 + ηt, t = 1, ..., T (2)
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where yt is an M×1 (zero mean) vector of observations, G is

an M ×r mixing matrix, ut is an r×1 matrix of independent

components, ρ is the AR(1) parameter, ǫt ∼ N(0, σ2IM ),
ηt ∼ N(0, Ir) and ut and ǫt are independent.

We assume that the signal Gut is sparse when expressed

in the basis Φ and thus we write G = ΦB, where Φ a 2D

orthogonal wavelet transform. The normalized frequency do-

main log-likelihood function [12],[13] for this model is given

by

lθ(Ỹ ) = −
1

2

T
∑

k=1

(

tr(Ω−1
k Sk) + log |Ωk|

)

,

where Ωk = ΦBF kB
H
Φ

T + σ2IM , Sk =
ỹkỹ

H
k

T
, ỹk and

ũk contain the Fourier transforms of yt and ut, respectively,

θ = (B, σ2,F 1, ...,F T ), Ỹ = [ỹT
k ] and

F k = diag(Fkj), k = 1, ..., T

Fkj =
1

|1− ρje−jωk |2
, j = 1, ..., r

where ωk = 2π
T
k. To enforce sparseness we introduce a pe-

nalized log-likelihood function

Jθ(Ỹ ) = lθ(Ỹ )−
h

2

M
∑

v=1

|||bv|||0,

where B = [bTv ] and h is a tuning parameter. The ℓ0 penalty

is frequently used in wavelet analysis where it leads to hard-

thresholding [14]. The notation |||bv|||0 = I(||bv|| > 0)
is used to indicate that this is a vector ℓ0 penalty, where the

indicator function I is 1 if ‖bv‖ > 0 and is zero otherwise.

2.1. Estimation

The EM algorithm [6] offers a reliable way for maximizing

the frequency domain log-likelihood. The main idea behind

the algorithm is to use a surrogate function instead of directly

maximizing the log-likelihood function. The algorithm con-

sists of two steps. In the E-step, the surrogate function, which

is called the EM functional is constructed, while in the M-

step, the previously constructed EM-functional is maximized.

The algorithm iterates between E- and M-steps until it con-

verges.

The penalized complete log-likelihood is given by

Jθ(Ỹ , Ũ) =

T
∑

k=1

(

−
M

2
log σ2 −

‖ỹk −ΦBũk‖
2

2σ2

−
1

2
ũT
kF

−1
k ũk −

1

2
log |F k|

)

−
hT

2

M
∑

v=1

|||bv|||0,

where Ũ = [ũT
k ].

In the E-step, we construct the penalized EM functional

EM(θ0,θ) = E0(Jθ(Ỹ , Ũ)|Ỹ )

= −
tr(S̃y)

2σ2
+

tr(BCH
0 )

σ2
−

tr(BA0B
H)

2σ2

−
1

2

T
∑

k=1

tr(F−1
k Ak)−

1

2T

T
∑

k=1

log |F k|

−
M

2
log σ2 −

h

2

M
∑

v=1

|||bv|||0,

where

Ak =
1

T
E0[ũkũ

H
k |ỹk]

=
1

T

(

σ2
0W

−1
k + 〈ũk〉〈ũk〉

H
)

A0 =
T
∑

k=1

Ak

W k = F−1
k0 σ

2
0 +BH

0 B0

〈ũk〉 = E[ũk|ỹk] = W−1
k BH

Φ
T ỹk

C0 = [cTv0] =
1

T

T
∑

k=1

Φ
T ỹk〈ũk〉

H

and θ0 = (B0, σ
2
0 ,F 10, ...,F T0) denotes the current iterate

in the EM algorithm. We denote the current iterate of a vari-

able by subscript 0 and the next iterate by subscript 1.

In the M-step, we maximize the penalized EM functional.

First we maximize with respect to G, this is equivalent to

minimizing

f(B) =

M
∑

v=1

(

1

2
bHv A0bv − bHv cv0 +

h

2
|||bv|||0

)

.

The solution to this optimization problem is

bv1 = A−1
0 cv0I(c

H
v0A

−1
0 cv0 ≥ h), v = 1, ..,M.

Maximization of the EM function w.r.t. σ2 yields

σ2
1 =

1

M

(

tr(S̃y)−
∑

v∈Ia

cHv0A
−1
0 cv0

)

,

where Ia is an index set for the active (non-zero) variables.

Finally we get Fkj1 = 1
|1−ρj1e

−jωk |2
.

We assume that the values of ρj are known. The sgnICA

algorithm is given in Algorithm 1.

3. TUNING PARAMETER SELECTION

The proposed algorithm has two tuning parameters, r which

is the number of components and h, which is the sparsity
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Algorithm 1: The sgnICA algorithm

Input: Data matrix Y , r, Φ, and h
Initialization: B0, σ2

0 , ρj , j = 1, ..., r.

while (‖B1 −B0‖
2
F /‖B0‖

2
F > δ) do

Fkj =
1

|1−ρj0e
−jωk |2

, j = 1, ..., r; k = 1, ..., T

W k = F−1
k0 σ

2
0 +BH

0 B0, k = 1, ..., T

〈ũk〉 = W−1
k BH

Φ
T ỹk, k = 1, ..., T

C0 = [cTv0] =
1
T

∑T
k=1 Φ

T ỹk〈ũk〉
H , v =

1, ...,M

Ak = 1
T

(

σ2
0W

−1
k + 〈ũk〉〈ũk〉

H
)

, k = 1, ..., T

A0 =
∑T

k=1 Ak

bv1 = A−1
0 cv0I(c

H
v0A

−1
0 cv0 ≥ h), v = 1, ..,M.

σ2
1 = 1

M

(

tr(S̃y)−
∑

v∈Ia
cHv0A

−1
0 cv0

)

Output: Ĝ = ΦB̂, Û , Ŷ = ÛĜ
T

and σ2

penalty. The Bayesian Information Criterion (BIC) [15] is a

classical choice for parameter selection for this kind of model.

It is based on the likelihood function and a term that penalizes

for the number of parameters in the model. It is given by

BICr,h = −2ℓθ(Ỹ ) + dim(θ̂) log(T )

where dim(θ̂) = Mhr−r(r−1)/2+1 is the effective number

of variables and Mh is the number of active variables which

are kept by the algorithm. The values of the tuning parameters

that correspond to the minimum of BIC are chosen.

(a) g(1) (64
2
×1)
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(b) u(1) (32× 1) ρ1 = 0.9
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(d) u(2) (32× 1) ρ2 = 0.4

Fig. 1: The simulated dataset is generated by Y = UGT ,

where g(1) and g(2) are the components (columns) of the mix-

ing matrix G while u(1) and u(2) are the columns of U , i.e.,

the source signals.

4. SIMULATION

We simulated data according to (1)-(2) using 2 source signals

with the AR(1) parameter ρ chosen as 0.9 and 0.4, respec-

tively. The simulated dataset is generated by Y = UGT

where G is a 642 × 2 matrix and U is 32 × 2, giving data

matrix Y of dimension 32× 642, i.e., T = 32 and M = 642.

The columns of G which contain an image of a rectangle of

unit magnitude, −1 and 1, respectively, and the columns of

U , i.e., the sources, are shown in Figure 1. Figure 2 shows

the BIC and signal-to-noise ratio (SNR) values as a function

of h for the simulated dataset.

We perform two experiments using simulated data and

compare our results to sPCA and fastICA. In the first experi-

ment we demonstrate the separation of the sources and in the

second experiment we consider denoising.

For the separation experiment we added Gaussian noise to

the simulated data giving SNR of 5 dB and then we computed

the estimates of G and U using all the methods. The results

are shown in Figures 3 and 4, respectively. The percentage of

active variables is 8.18% for sgnICA and 11.16% for sPCA.

In Figure 3, we see that sgnICA separates the components

of G significantly better than the other methods. The degree

of separation is measured as the angle (in degrees) between

the estimate and the true signal. In Figure 4, the sgnICA

method is shown to give near perfect estimates of the sources,

as measured by the correlation between the estimate and the

true source.

For the denoising experiment, we used the same simu-

latated dataset as before and we added varying amounts of

Gaussian noise, ranging from SNR of −5 dB to 5 dB in steps

of 1 dB. For each experiment, the denoised data is computed

from the estimates of G and U , i.e., Ŷ = ÛĜ
T

. This was

repeated 50 times and the final SNR value is the mean value

of all the trials. The results are shown in Figure 5. Again,

sgnICA significantly outperforms the other methods in every

experiment.
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Fig. 2: Comparison of BIC and SNR for selection of the spar-

sity penalty parameter h for the first experiment.
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(a) sPCA ĝ(1)
6 15.3◦ (b) fastICA ĝ(1)

6 7.2◦ (c) sgnICA ĝ(1)
6 2.8◦

(d) sPCA ĝ(2)
6 31.1◦ (e) fastICA ĝ(2)

6 21.6◦ (f) sgnICA ĝ(2)
6 4.7◦

Fig. 3: The estimated components of G and their separation

as given by the angle (in degrees, denoted 6 ) between the

estimate and the true signal.
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(c) fastICA: u(1) vs û(1), CC = 0.987

0 10 20 30
0

0.5

1

(d) fastICA: u(2) vs û(2), CC = 0.997
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(e) sgnICA: u(1) vs û(1), CC = 1.000
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(f) sgnICA: u(2) vs û(2), CC = 0.999

Fig. 4: Normalized estimates of the sources for all methods.

CC is the correlation coefficient between the estimate and the

true source.

5. REAL HYPERSPECTRAL DATA

In remote sensing, a hyperspectral image is a cube of images

where each image represents a certain tight band of frequen-

cies in the electromagnetic spectrum. A typical dataset can

contain hundreds of bands, covering a wide band of frequen-
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Denoising results
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Fig. 5: Results for the denoising experiment. The standard

deviation of each experiment (50 trials) is shown by errorbars.

cies. The dataset used here, Indian Pines 1, is of dimension

128 × 128 pixels and 220 spectral bands in the wavelength

range of 0.4 − 2.5µm. There are a number of noisy bands

which make their analysis difficult. Figure 6 shows such a

band and the denoised band using the proposed method.
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Fig. 6: A very noisy band from the hyperspectral dataset and

the denoised band using the proposed method.

6. CONCLUSIONS

In this paper we have presented a novel sparse Gaussian noisy

ICA algorithm, where the sources have a temporal correla-

tion described by an AR(1) process. The proposed method

was compared to a sparse PCA based method and the fastICA

method, using simulated data and was demonstrated to give

significantly better separation of the source signals and also

shown to give significantly better denoising of the simulated

data than the other methods. Finally, the practical application

of the proposed method to hyperspectral image denoising was

demonstrated.

1Is available through Purdue’s University MultiSpec site
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