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ABSTRACT

In this paper, the importance sampling (IS) concept is exploited for the

first time in the context of maximum likelihood (ML) estimation of

both the time delays and angles of arrival (AoAs) in multipath prop-

agation environments. The global maximum of the compressed like-

lihood function (CLF) is found empirically with a low computational

cost. Simulations suggest that the new IS-based ML-type estimator

outperforms, in terms of accuracy, the main state-of-the-art techniques

published on the topic. It is also able to reach the Cramér-Rao-lower

bound (CRLB) [13] with few received samples.

Index Terms— time delays, AoAs, multipath propagation.

1. INTRODUCTION

In many fields such as radar, sonar or wireless communications, it is

crucial to have accurate estimates for the received signal’s time delays

and angles of arrival (AoAs). Different methods have been so far pro-

posed on this topic and most of them consider the separate estimation

of either the angles or the delays [1–8]. Yet, estimating the AoAs sep-

arately from the delays is not optimal when the multipath components

overlap. Hence, joint estimation of these parameters can improve the

performance significantly. Further, having the information about the

angle and the delay of each reflected path can improve the performance

of the equalization process [9].

In this context, there have been some works in the open literature that

tackle the joint angles and delays estimation (JADE) problem. Roughly

speaking, all the existing JADE methods can be categorized into two

major categories: subspace-based algorithms and ML-based ones. The

most common subspace-based JADE estimators rely on extensions of

the well-known MUltiple SIgnal Classification (MUSIC) [10–12] and

Estimation of Signal Parameters by Rotational Invariance Techniques

(ESPRIT) [13]. Under the ML class, we mention the notable solution

of [9] which is iterative in nature and, therefore, its performance is

closely tied to the initial guess it requires. Motivated by these facts,

we propose in this paper a new ML JADE technique which is based on

the IS concept [17], a well-known Monte-Carlo technique that is usu-

ally used to solve high-dimensional optimization problems. The main

advantage of the new ML technique is that it always returns the global

maximum of the CLF and does not require any initial guess.

The rest of this paper is structured as follows. In section 2, we intro-

duce the system model. Section 3 is dedicated to the derivation of the

CLF and the new ML solution. In section 4, we present the simulation

results before drawing out some concluding remarks in section 5.

2. SYSTEM MODEL

Consider a uniform linear array (ULA) consisting of P antenna el-

ements with half-wavelength spacing immersed in a homogeneous

medium in the far field of one source that is transmitting a planar

wave. After traveling through a multi-path environment, the received

analog signal on each {pth}Pp=1 antenna element is modeled as a

complex signal as follows:

xp(t) =

Q∑

q=1

γqap(θq)s(t− τq) + wp(t), (1)

where Q is the number of reflections and s(t) is a known transmitted

signal. The noise components wp(t) are modeled by zero-mean com-

plex Gaussian random processes with independent real and imaginary

parts, each of variance σ2/2. The complex channel coefficients γ =
[γ1, γ2, · · · , γQ]

T are assumed to be constant but unknown. More-

over, ap(θq) is the amplitude response of the pth sensor to a wavefront

impinging from location θq with time delay τq . We also define the pa-

rameter vectors θ = [θ1, θ2, · · · , θQ]
T and τ = [τ1, τ2, · · · , τQ]

T .

After sampling the received analog signal at time instants tm = mTs,

the obtained samples are given by [9]:

xp(tm) =

Q∑

q=1

γqs(tm − τq)e
jπ(p−1)cos(θq) + wp(tm), (2)

where m = 1, 2, ...,M with M being the total number of received

samples that are gathered in a space-time matrix:

X = A(θ)S(τ ) +Ω, (3)

whose entries are given by [X]p,m = xp(tm). In (3), S(τ ) is a

(Q × M ) matrix whose qth row is s(τq) = [s(t1 − τq), s(t2 −
τq), · · · , s(tM − τq)], Ω is a (P × M ) noise matrix with entries

[Ω]p,m = wp(tm) and A(θ) = [a(θ1),a(θ2), . . . ,a(θQ)] is a

(P ×Q) matrix containing the Q steering vectors given by:

a(θq) =

[
1, ejπ cos(θq), ej2π cos(θq), ..., ej(P−1)π cos(θq)

]T

.

3. THE IS-BASED ML-TYPE ESTIMATOR

3.1. Derivation of The CLF

We begin by deriving the actual log-likelihood function from which

the CLF will be found. In fact, from (2) it can be shown that:

ln
(
p[x(t1), . . . ,x(tM )]

)
= −πM ln

(
σ2)

−
1

σ2

M∑

m=1

∥∥∥∥x(tm)−

Q∑

q=1

γqa(θq)s(tm − τq)

∥∥∥∥
2

, (4)

in which x(tm) = [x1(tm), x2(tm), · · · , xP (tm)]T . Now, maximiz-

ing the right-hand side of (4) with respect to {θq}
Q
q=1 and {τq}

Q
q=1

is equivalent to minimizing its second term. Hence, by applying the
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discrete Fourier transform (DFT) and using the Parseval’s equality, we

obtain the following objective function:

L(x̂|τ ,θ,γ) =
1

σ2

∥∥∥∥x̂− D̂γ

∥∥∥∥
2

, (5)

where x̂ = [x̂T
1 , x̂

T
2 , ..., x̂

T
P ] with {x̂p = DFT(xp)}

P
p=1 and xp =

[xp(t1), xp(t2), · · · , xp(tM )]T . We also introduce ŝ(ω) as the Fourier

transform of s(t) which is evaluated at the involved DFT frequency

points {ωm}
M
m=1 and the (PM×Q) matrix D̂ = [D̂1, D̂2, ..., D̂P ]

T

where D̂p is a
(
Q×M

)
matrix whose mth column, D̂p(m), is given

by:

D̂p(m) = [ap(θ1)ŝ(ωm)e−jωmτ1 , ap(θ2)ŝ(ωm)e−jωmτ2

, · · · , ap(θQ)ŝ(ωm)e−jωmτQ ]T . (6)

In order to decrease the number of unknown parameters upon which

(5) depends, we first proceed to maximizing it with respect to γ, which

yields:

γ̂ = (D̂H
D̂)−1

D̂
H
x̂. (7)

Then, by using γ̂ in (5) instead of γ, we obtain the so-called CLF:

Lc(x̂|θ, τ ) =
1

σ2

(
x̂

H
D̂(D̂H

D̂)−1
D̂

H
x̂

)
. (8)

3.2. Global maximization of the CLF

By a closer look at the CLF derived in (8), it is seen that finding an ana-

lytical expression of its global maximum is trivially intractable. There-

fore, it becomes clear that a numerical or an empirical approach must

be envisaged. In this context, an iterative method was previously de-

veloped in [9]. Unfortunately, it requires a good initialization, which

is not always available in practice. An alternative way that allows to

avoid all the drawbacks of iterative implementations is to make use of

the global maximization theorem proposed by Pincus in [14]. It simply

states that for a given cost function g(.) that depends on any unknown

parameter vector α, its global maximum is reached at the vector α̂

whose qth entry is given by:

α̂q = lim
ρ→∞

∫
· · ·

∫
αq exp {ρg(α)} dα

∫
· · ·

∫
exp {ρg(α)} dα

. (9)

The limit involved in (9) is approximated, for some sufficiently high

value ρ0 of ρ, as follows:

α̂q =

∫
· · ·

∫
αq exp {ρ0g(α)} dα

∫
· · ·

∫
exp {ρ0g(α)} dα

. (10)

Applying this theorem to our estimation problem yields the following

ML estimates:

τ̂q =

∫
· · ·

∫
τqLc(x̂|τ ,θ)dθdτ , q = 1, 2, · · · , Q (11)

θ̂q =

∫
· · ·

∫
θqLc(x̂|τ ,θ)dθdτ , q = 1, 2, · · · , Q (12)

where Lc(x̂|τ ,θ) is the joint pseudo-probability density function

(pseudo-pdf) defined as:

Lc(x̂|θ, τ ) =
exp {ρ0Lc(x̂|θ, τ )}∫

· · ·

∫
exp {ρ0Lc(x̂|θ, τ )} dθdτ

. (13)

Here, we denote from now the qth element of any vector z as zq .

Therefore in (11) and (12), we have τ̂q = τ̂q and θ̂q = θ̂q for

q = 1, 2, · · · , Q. Intuitively, when ρ0 tends to infinity, Lc(x̂|θ, τ )
in (13) becomes a Dirac-delta function centered at the location of the

true maximum value. Thus, the ML estimates are easily obtained by

evaluating the integrals in (11) and (12), yet with a careful choice

of the design parameter ρ0. Fortunately, these integrals can be in-

terpreted as the expected values of multiple realizations which are

generated using the pseudo-pdf Lc(x̂|θ, τ ), i.e., τ̂q = Eτ{τq} and

θ̂q = Eθ{θq}. Indeed, if we are able to generate R realizations

of random vectors, {τ (r)}Rr=1 and {θ(r)}Rr=1, which are distributed

according to Lc(x̂|θ, τ ), it will be very accurate to approximate the

integrals in (11) and (13) as follows:

τ̂q =
1

R

R∑

r=1

τ
(r)
q and θ̂q =

1

R

R∑

r=1

θ
(r)
q . (14)

Clearly, as the number of generated values R increases, the variances of

the above arithmetic means become smaller and the estimates approach

the global maximum of the CLF.

3.3. The IS technique

A remaining practical issue is how to generate the required realizations

according to Lc(x̂|θ, τ ). Unfortunately, the proposed pseudo-pdf in

(13) is extremely non-linear. Our goal is then is to approximate it by

a product of multiple two-dimensional pdfs and, therefore, transform

the problem of generating two vectors of parameters, simultaneously,

into generating multiple couples of realizations. This can be accom-

plished through the IS concept. Applied to our situation, it leads to the

following result:

α̂q =

∫
· · ·

∫
αq

Lc(x̂|θ, τ )

g(x̂|θ, τ )
g(x̂|θ, τ )dθdτ . (15)

where αq stands for τq or θq depending on the context and g(x̂|θ, τ )
is another pseudo-pdf to be designed as close as possible to Lc(x̂|θ, τ )
while allowing at the same time to separate the multidimensional inte-

grals. After doing so, we can use the following Monte-Carlo approxi-

mation to easily evaluate the involved integrals:

∫
· · ·

∫
αq

Lc(x̂|θ, τ )

g(x̂|θ,τ )
g(x̂|θ,τ )dθdτ ≈

1

R

R∑

r=1

α
(r)
q

Lc(x̂|θ
(r),τ (r))

g(x̂|θ(r),τ (r))
,

where α
(r)
q is the rth generated realization according to the simpler

pseudo-pdf g(x̂|θ, τ ). In fact, by revisiting (8), one can notice that it

is the presence of the inverse [D̂HD̂]−1 that actually makes the gen-

eration of the required realizations with respect to Lc(x̂|θ, τ ) so diffi-

cult. Fortunately, we show in the sequel that the matrix D̂HD̂ can be

approximated by a diagonal matrix. Indeed, we have:

D̂
H
D̂ =

M∑

m=1

|ŝ(ωm)|2ΦH(ωm, τ )AH(θ)A(θ)Φ(ωm, τ ),

where:

Φ(ωm, τ ) = diag

(
e−jωmτ1 , e−jωmτ2 , · · · , e−jωmτQ

)
.

The diagonal entries of D̂HD̂ are thus given by:

[D̂H
D̂]ll = P

M∑

m=1

|ŝ(ωm)|2, (16)
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and the off-diagonal ones can be rewritten as follows:

[D̂H
D̂]lk=

( M∑

m=1

|ŝ(ωm)|2ejωm(τl−τk)

)( P∑

p=1

ejπ(p−1)(cos θk−cos θl)

)
.

Now, it becomes clear that it is indeed reasonable to neglect the off-

diagonal elements in front of the diagonal ones, i.e., [D̂HD̂]ll ≫

[D̂HD̂]lk. To validate this assumption, we define τlk = (τl − τk)

and the ratio, β(τlk, θl, θk) = [D̂HD̂]lk/[D̂
HD̂]ll, which is given

by:

β(τlk, θl, θk) =
1

P

M∑

m=1

|ŝ(ωm)|2
×

( M∑

m=1

|ŝ(ωm)|2ejωm(τl−τk)

)

×

( P∑

p=1

ejπ(p−1)(cos θk−cos θl)

)
. (17)

Then, we generate a very large number of realizations of τlk, and

(θl, θk) uniformly over [−10Ts, 10Ts] and [0, π]2, respectively. By

using these realizations in (17), we compute the complementary cumu-

lative density function Fc(x) = Pr[β(τlk, θl, θk) > x] and plot it in

Fig. 1.
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Fig. 1. Complementary cumulative density function of β(τlk, θl, θk).

This figure, suggests that the off-diagonal elements of D̂HD̂ can be

neglected with very high probability in front of the diagonal ones. In

fact, the ratio β(τlk, θl, θk) has an extremely low probability to exceed

0.1. We see also that this approximation is more valid in joint delays

and AoAs estimation as compared to the estimation of the delays only,

for which the ratio is given by:

β(τlk) =

∑M

m=1 |ŝ(ωm)|2ejωm(τl−τk)

P
∑M

m=1 |ŝ(ωm)|2
. (delays only)

Thus, we will henceforth use the following approximation:

D̂
H
D̂ ≈

(
P

M∑

m=1

|ŝ(ωm)|2
)
IQ×Q, (18)

with IQ,Q being the (Q×Q) identity matrix. By doing so, we obtain:

Lc(x̂|θ, τ ) ≈
ρ0

σ2P
∑M

m=1 |ŝ(ωm)|2
x̂

H
D̂D̂

H
x̂, (19)

which can be rewritten as follows:

Lc(x̂|θ, τ ) ≈ ρ1

Q∑

q=1

I(θq, τq), (20)

where ρ1 = ρ0
(
σ2P

∑M

m=1 |ŝ(ωm)|2
)−1

and I(θ, τ) is the peri-

odogram of the signal:

I(θ, τ)=

∥∥∥∥
P∑

p=1

ejπ(p−1) cos(θ)
M∑

m=1

s(ωm)x̂∗
p(ωm)e−j2πτωm

∥∥∥∥
2

.

From (20) it becomes clear that the simpler pseudo-pdf that should be

used in (15) is given by:

gρ1(x̂|θ, τ ) =
exp {gρ1(x̂|θ, τ )}∫

· · ·

∫
exp {gρ1(x̂|θ, τ )} dθdτ

, (21)

where gρ1(x̂|θ, τ ) is given by:

gρ1(x̂|θ, τ ) , ρ1

Q∑

q=1

I(θq, τq), (22)

In the following, we provide the estimation of the time delays only

since the very same steps hold for the AoAs as well. By injecting (21)

in (15) and using the fact that
Lc(x̂|θ,τ)
g(x̂|θ,τ)

≈ 1, it can be shown that the

multiple integrals in (15) can be split into Q pairs of double integrals

each of which corresponding to one of the couples (τq,θq). Hence, we

obtain the following qth estimate:

τ̂q =

∫∫
τq exp {ρ1I(θq, τq)} dθqdτq

∫∫
exp {ρ1I(θq, τq)} dθqdτq

. (23)

At this point, it becomes obvious that the pdf that can be used to gen-

erate the required realizations is only two-dimensional and is given by:

gρ1(x̂|θq, τq) =
exp {ρ1I(θq, τq)}∫ ∫
exp {ρ1I(θq, τq)} dθqdτq

. (24)

Using (24) in (23), it follows that the estimates τ̂q can be rewritten as:

τ̂q =

∫
τq

(∫
gρ1(x̂|θq, τq)dθq

)
dτq. (25)

We further notice that the inner integral in (25) is nothing but the

marginal pdf of τq denoted as:

gρ1(x̂|τq) =

∫
gρ1(x̂|θq, τq)dθq,

and, hence, the ML estimates of the time delays are expressed as fol-

lows:

τ̂q =

∫
τqgρ1(x̂|τq)dτq, for q = 1, · · · , Q, (26)

which is equivalent to the expected value of τq that is computed as

done in (14) after generating R realizations {τ
(r)
q }

R
r=1 according to

gρ1(x̂|τq). At low SNR values, an estimation bias can be introduced

as explained in [15]. To overcome this shortcoming, one can use the

circular mean instead of the linear mean in (14), i.e.:

τ̂q ≈
1

2π
∠

R∑

r=1

exp
{
j2πτ (r)

q

}
, (27)

where ∠(.) returns the argument of any complex number. The esti-

mates for the AoAs can be obtained by applying the same procedure.
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Yet, it is seen that we have so far neglected the coefficient
Lc(x̂|θ,τ)
gρ1

(x̂|θ,τ)

that appears in (15). This term can be actually used in (27) in order to

improve the estimation performance. In this case, the estimates of τ

and θ are simply given by:

τ̂ =
1

2π
∠

R∑

r=1

Lc(x̂|θ
(r), τ (r))

gρ1(x̂|θ
(r), τ (r))

exp
{
j2πτ (r)

}
, (28)

θ̂ =
1

2π
∠

R∑

r=1

Lc(x̂|θ
(r), τ (r))

gρ1(x̂|θ
(r), τ (r))

exp
{
j2πθ(r)

}
. (29)

The implementation of the IS algorithm can be summarized as follows:

Algorithm 1 Implementation of IS algorithm

Evaluate gρ1(x̂|θ, τ) at many grid points (τ i, θi) and take the Q

largest maxima τ̂max and θ̂max of gρ1(x̂|τ) and gρ1(x̂|θ), respec-

tively.

Revaluate gρ1(x̂|θ, τ) locally around τ̂max and θ̂max.

for r ← 1 to R do

for q ← 1 to Q do

generate τ
(r)
q locally arround τ̂max

q using gρ1(x̂|τ).

generate locally θ
(r)
q arround θ̂max

q using gρ1(x̂|θ, τ
(r)
q ).

end for

Evaluate
Lc(x̂|θ(r),τ (r))

gρ1
(x̂|θ(r),τ (r))

end for

Use (28) and (29) to obtain θ̂ and τ̂ .

For more details about the generation of the required realizations, we

refer the reader to [16].

4. SIMULATION RESULTS

In this section, we assess the performance of the new IS-based ML

estimator using R = 2000 and Mc = 1000 Monte-Carlo runs in all

simulations. We also consider the iterative ML estimator of [9], the

shift invariance joint angles-of-arrival and time-delays estimation (SI-

JADE) technique of [13] and the CRLB [13], as benchmarks. For the

sake of briefness and without loss of generality, we consider the case

of two equi-powered paths only. We will also consider the case a of

five-element ULA, i.e., P = 5. The sensors are separated by half

the wavelength and a raised-cosine signal s(t), with excess bandwidth

∆f = 0.3, is considered as a known transmitted waveform. We also

sample the received signal at twice the Nyquist rate.

Fig. 2 compares the performance of the proposed method against the

benchmarks listed above in terms of RMSE (root mean square error)

versus the SNR for both paths. The SNR is the signal-to-noise ratio

given by SNR = |γq|
2 ∑M

m=1 |s(tm)|2
/
(M σ2) for each qth path.

The two paths are located at directions 90◦and 75◦ with delays 5 Ts

and 2.5 Ts, respectively. Fig. 2 shows that our IS-based ML-type so-

lution (IS-ML) algorithm exhibits the best performance over the entire

SNR range. In fact, the iterative ML estimator [9] relies on another

initialization algorithm and the latter is not guaranteed to provide suf-

ficiently accurate initial guesses about the delays and the AoAs. This

makes the iterative ML technique converge to a local maximum af-

fecting thereby its overall performance. The new IS-based solution,

however, always returns the global maximum of the CLF without any

need for an initial guess. The new IS-based algorithm outperforms, as

well, SI-JADE which is a subspace-based technique and, therefore, it

requires a large number of received samples to reach the CRLB.
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Fig. 2. RMSE for (a) the first delay, (b) the second delay, (c) the first

AoA, and (d) the second AoA with: M = 128 samples, ρ1 = 10, and

ρ0 = 4000.

Furthermore, we compare in Tab. 1 the complexity of the three esti-

mators in terms of computational complexity. The iterative ML of [9]

require the maximization of multiple cost functions with respect to τ

and θ, separately. The cost functions are evaluated in L and K grid

points for τ and θ, respectively. These two parameters are set to 3000
and 2800 for the iterative solution. Clearly, we use smaller number of

grid points with IS (LIS = 1000 and KIS = 1180) since we collect

many realizations locally around rough maxima and then refine the fi-

nal result through the circular mean without the need for a dense grid

discretization. We also set Niter = 5 as the number of iterations for

the iterative ML of [9]. To evaluate the computational complexity of

SI-JADE [13], we take m1 = 1 and m2 = 5 as stacking parameters.

We also fix the number of samples to M = 128 and the number of

paths to Q = 2.

Table 1. Complexity assessment
Algorithm Complexity ratio

IS-based O
(
(P + 1)M ln(M) + LIS P KIS +KIS M2 + P M LIS

)
1

+R (Q2 M P + 2 (M P Q+Q2) +Q3 + 2 Q)
Iterative ML O((P + 1)M lnM log(M) P ) 9.5119

+(((Q (P + 1) + P 2 + 1) M +M P 2 + 2 P + P 2) K
+(((2 Q2 P +Q2 + P 2) M +M + 2 M L)
+(P Q M +Q2 M Q2 + P Q2 + 2 P + 1) K) Niter) Q

SI-JADE M log(M) (P + 1) + P M +m1 (M −m2 + 1)3 + (m2 m1 (M −m2 + 1))2 4.7597

+(m2 − 1) (M −m1 + 1) (m1 ∗ (M −m2 + 1)2 2 + 4 m1 (M −m2 + 1))
+m1 (M −m2 + 1) (2 (m2 − 1) ∗ (M −m1 + 1))2

+2 Q2 (m1 (M −m2 + 1) (m1 − 1)− (2/3) Q3) 4 + 3 Q3

It turns out that the iterative algorithm is nine times more complex

than the new IS-based ML estimator. Accuracy of the former depends

on the discretization step and intensive discretization is hence required

to achieve higher performance. Clearly, the use of multiple SVD op-

erations and the real processing as described in [13] makes SI-JADE

more complex than the IS ML algorithm, as well.

5. CONCLUSION

In this paper, we proposed a new non-iterative implementation of the

ML estimator that exploits the importance sampling concept for the

joint AoAs and time delays ML estimation. One of the main advan-

tages of the new estimator is that it always returns the global maxi-

mum of the likelihood function reaching thereby the CRLB. Moreover,

it remarkably incurs less computational burden than the most accurate

state-of-the-art techniques while achieving remarkably better perfor-

mance.
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