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ABSTRACT

In this paper, we deal with the problem of RSS-based self-

localization of a wireless blind node using a statistical path

loss model for the measurements. The considered environ-

ment is non-homogeneous, i.e., the attenuation factors of the

various links are different. We propose a two-stage procedure:

the first stage exploits measurements between anchors to esti-

mate transmitted powers and attenuation factors. Then, a ML

localization algorithm, fed by the measurements at the blind

node only, is used to estimate the unknown position. In this

second stage, the attenuation factors between the blind node

and the anchors are modeled as IID RVs ruled by a Gaussian

distribution with mean and variance to be computed based on

the estimated attenuation factors of the first stage. The per-

formance assessment shows that the proposed approach could

be a viable means to handle localization in non-homogeneous

environments.

Index Terms— Received signal strength (RSS), localiza-

tion, maximum likelihood (ML) estimation.

1. INTRODUCTION

With the widespread of telecommunication systems, RF com-

munication signals from different sources and technologies

are found in almost every environment of daily life and can be

exploited for localization purposes. Several localization ap-

proaches have been proposed over the years [1, 2, 3, 4, 5, 6].

Techniques based on the received signal strength (RSS) are

the preferred option when simplicity, low cost, and technol-

ogy obliviousness are the main requirements. In addition,

RSS is readily available from any radio interface through

a simple energy detector and can be modeled by the well-

known path loss model (PLM) [7] regardless of the particu-

lar communication scheme. Based on that, RSS can be ex-

ploited to implement “opportunistic” localization for different

wireless technologies, like e.g. Wi-Fi [8], cellular networks

[9, 10], DECT [11] or even FM [12]. In some standards, like

e.g. IEEE 802.15.4, a RSS indicator (RSSI) is encoded di-
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rectly into the protocol stack, hence localization features can

be implemented with a minimum additional cost [13].

Localization approaches can be grouped in two main cat-

egories: range-based and range-free. Range-based are sim-

pler, but suboptimal, techniques which first measure distances

from known locations (typically called anchors or beacons)

and then combine these data to estimate the unknown po-

sition. The drawback is that the accuracy is usually limited,

especially when the standard lateration algorithm is adopted

[14], and also some bias issues arise in the ranging phase [15].

Range-free techniques, conversely, aim at directly estimating

the target position, e.g. via maximum likelihood (ML) esti-

mation [14, 16]: they typically outperform range-based tech-

niques in terms of accuracy at the price of an additional com-

putational complexity. In both cases a complication is that the

RF propagation must be considered, i.e., the channel char-

acteristics vary due to multipath (fading) and non-negligible

modifications occur also due to mid-to-long term changes in

the environment, leading to non-stationary channel parame-

ters [17]. Although many existing works assume that the lat-

ter are known or can be measured off-line, in real applica-

tions the problem of positioning implicitly requires that the

sensing of the environment, i.e., channel estimation (com-

monly called “calibration”) must be performed continuously

[14, 17, 18, 19] with no human assistance. A viable solution

is to exploit nodes in known positions (anchors) to derive esti-

mation procedures (self-calibration) with reduced complexity

[14, 17, 18, 20].

A few papers have considered the possibility that the

transmission powers from each node are not known, due

either to lack of information about the sources (cognitive

approach [21]) or to the uncertainty on the height and orien-

tation of the node, tolerances in the transmitter components,

losses in RF connectors, and power supply voltage variations

[22]. To the best of our knowledge, however, no previous

work has addressed the problem of RSS-based localization

in a fully non-homogenous environment where all param-

eters (i.e., transmission powers and attenuation factors) are

unknown. We propose a two-stage procedure: the first stage

exploits measurements between anchors to estimate trans-

mitted powers and attenuation factors (so generalizing the

approach in [14, 17, 18]). Then, a ML localization algorithm,
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fed by the measurements at the blind node only, is proposed.

In this second stage, the attenuation factors between the

blind node and the anchors are modeled as independent and

identically-distributed (IID) random variables (RVs) ruled by

a Gaussian distribution with mean and variance to be com-

puted based on the attenuation factors estimated at the first

stage (namely, corresponding to links between anchors). Sim-

ulation results show that the proposed approach outperforms a

conventional ML algorithm derived assuming a homogeneous

environment.

The paper is organized as follows: next section is devoted

to the problem formulation while Section 3 contains the de-

sign of the proposed localizer; Section 4 is devoted to the per-

formance assessment while Section 5 contains some conclud-

ing remarks.

2. PROBLEM FORMULATION

Assume N nodes moving over known trajectories (anchors).

Nodes average the instantaneous power for each received sig-

nal, over sufficiently short time intervals (corresponding to

an average over a few wavelengths), in order to filter out the

rapid variations of the received power due to multipath. We

assume though that the trajectories of the anchors are of lim-

ited extension so that the attenuation factor of each link can

be considered approximately constant over the overall obser-

vation time interval. As a consequence, using a statistical path

loss law with lognormal shadowing [7], the kth measurement

of the average power collected from the jth anchor and trans-

mitted by the ith one, Pi,j(k) say, is given by

Pi,j(k) = P0,i − 10αi,j log10 ‖ri(k)− rj(k)‖+ wi,j(k)

k = 1, . . . ,K (1)

where P0,i is the power transmitted by the ith anchor and re-

ceived at the reference distance of 1 m, αi,j is the path loss

exponent for the the link between the ith and the jth node

(typical values in between 2 and 4), ‖ · ‖ denotes the norm

of a vector, ri(k) and rj(k) denote the average position of

nodes i and j (according to a given Cartesian reference sys-

tem) over the (short) time interval used to compute the kth

measurement of the average received power, wi,j(k) the cor-

responding shadowing term, and K the number of measure-

ments made between anchors. Blind nodes with unknown po-

sition might also be present. Obviously, the kth measurement

of the power received from a blind node can be modeled as

Pi,b(k) = P0,i − 10αi,b log10 ‖ri(k)− rb‖+ wi,b(k)

k = 1, . . . ,K (2)

where now the pair (i, b) indicates the link from anchor i to

the blind node b, and rb the unknown position of the blind

node. Based on the Pi,j(k)s and possibly the Pi,b(k)s several

estimation problems can be conceived. In particular, we pro-

pose and assess a two-stage procedure to localize the blind

node. As a first stage, the power values P0,is and the αi,js are

estimated from the Pi,j(k)s. As a second stage, a ML estima-

tor of the blind node position rb is derived; it relies on the

assumption that the attenuation factors αi,b are IID RVs ruled

by a Gaussian model whose parameters are the sample mean

and the sample variance of the estimated αi,js.

3. ALGORITHM DESIGN

Starting from (1) we let

y(k) = [P1,2(k) · · · P1,N (k) · · ·

· · · PN,1(k) · · · PN,N−1(k)]
T ∈ RN(N−1)×1

and y = [yT (1) · · ·yT (K)]T ∈ RKN(N−1)×1, with T denot-

ing transpose. Moreover, we let αi,j = αj,i and define the fol-

lowing vectors of unknowns p = [P0,1 · · ·P0,N ]
T ∈ RN×1

and

a = [α1,2 · · · α1,N α2,3 · · · α2,N α3,4 · · ·

· · · α3,N · · · αN−1,N ]T ∈ R
N(N−1)

2 ×1.

It follows that y can be represented in terms of a linear model,

namely as

y = H1p+H2a+w = Qx+w (3)

where x = [pT aT ]T , Q = [H1 H2],

H1 =



























1N−1 0

... · · ·
...

0 1N−1

... · · ·
...

1N−1 0

... · · ·
...

0 1N−1



























∈ RKN(N−1)×N

H2 =







H2(1)
...

H2(K)






∈ RKN(N−1)×N(N−1)

2

with H2(k) ∈ RN(N−1)×N(N−1)
2 a matrix in which each col-

umn contains two non-zero terms. As to 1n ∈ Rn×1, it is an

n-dimensional column vector of ones. Finally, we have

w(k) = [w1,2(k) · · ·w1,N (k) · · ·

· · ·wN,1(k) · · ·wN,N−1(k)]
T ∈ RN(N−1)×1

and, hence, w = [wT (1) · · ·wT (K)]T ∈ RKN(N−1)×1.

Assuming that w ∼ N
(

0, σ2IKN(N−1)

)

and modeling

x and σ2 as deterministic unknown parameters, it follows that

the ML estimators (MLEs) of x and σ2 can be obtained as

x̂ =

[

p̂

â

]

= argmin
x

‖y−Qx‖2 =
(

QTQ
)−1

QTy (4)
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σ̂2 =
1

KN(N − 1)
yTP⊥

Q y (5)

where P⊥

Q is the projector onto the orthogonal complement of

the space spanned by the columns of Q. Observe that we have

implicitly assumed that matrix Q is full-column-rank; this is

generally true if anchors are moving and provided that K > 1
and N ≥ 2. Conversely, with stationary anchors, matrix Q

becomes rank deficient.

The localization of a blind node exploits the estimated val-

ues x̂ and σ̂2, given by (4) and (5), respectively, together with

the KN measurements of the power received from the blind

node. More precisely, we assume that the P0,is are known

and model the set of the αi,bs and the wi,b(k)s as an over-

all set of independent Gaussian RVs; in addition, we suppose

that αi,b ∼ N
(

µα, σ
2
α

)

with µα and σ2
α estimated from â as

follows

µ̂α =
2

N(N − 1)

∑

i,j

α̂i,j

and

σ̂2
α =

2

N(N − 1)

∑

i,j

(α̂i,j − µ̂α)
2

and wi,b(k) ∼ N
(

0, σ2
)

with σ2 replaced with (5). Thus, the

vector of observations at the blind node can be written as

yb = H1bp+H2bab +wb (6)

where yb = [yT
b (1) · · ·y

T
b (K)]T ∈ RKN×1, with yb(k) =

[P1,b(k) · · · PN,b(k)]
T ∈ RN×1,

H1b =



























1N 0

... · · ·
...

0 1N

... · · ·
...

1N 0

... · · ·
...

0 1N



























∈ RKN×N

H2b =







H2b(1)
...

H2b(K)






∈ RKN×N

H2b(k) being an N × N diagonal matrix whose diagonal

elements are −10 log10 ‖ri(k) − rb‖, i = 1, . . . , N , ab =
[α1,b · · ·αN,b]

T ∈ R
N×1, wb = [wT

b (1) · · ·w
T
b (K)]T ∈

R
KN×1, and wb(k) = [w1,b(k) · · ·wN,b(k)]

T ∈ R
N×1. It

is also a simple matter to show that vector yb is a normal ran-

dom vector with mean

E[yb] = H1bp+ µαH2b1N , µ (7)

and covariance matrix R ∈ RKN×KN whose elements can

be determined according to

E [(Pi,b(k)− E[Pi,b(k)]) (Pj,b(h)− E[Pj,b(h)])]

=







0, i 6= j

σ2
αBi,b(k)Bi,b(h), i = j, k 6= h

σ2 + σ2
αB

2
i,b(k), i = j, k = h

(8)

where Bi,b(k) = −10 log10 ‖ri(k)− rb‖, i = 1, . . . , N , k =
1, . . . ,K . Finally, the MLE of the position of the blind node

can be obtained as (remember that the unknown values of p,

µα, σ2
α, and σ2 are replaced with the available estimates)

r̂b = argmax
rb

{

1

(2π)KN/2 det(R)1/2

× exp

[

−
1

2
(yb − µ)T R−1 (yb − µ)

]}

. (9)

Observe now that the cost function is highly nonlinear in the

the variable rb since it is included into both µ and R (through

(7) and (8), respectively); we thus resort to numerical opti-

mization techniques to solve the problem. The corresponding

localization algorithm will be referred to in the following as

non-homogeneous ML (NH-ML) localizer.

4. PERFORMANCE ASSESSMENT

In this section, we use the standard Monte Carlo simulation

to evaluate the performance of the proposed algorithm, also

in comparison to a more conventional approach designed for

a homogeneous environment. Such a competitor algorithm as-

sumes, at the design stage, that all links share a common and

unknown attenuation factor α (homogeneous environment). It

first estimates (through the maximum likelihood technique)

α and p using the measurements between anchors; subse-

quently, it uses such estimates to perform the localization of

the blind node (again through a maximum likelihood tech-

nique), such an algorithm will be referred to in the following

as homogeneous ML (H-ML) localizer.

The simulated scenario is the following. In a square cover-

age area of 100 m×100 m there are N anchors. Each anchor

moves on a circular trajectory of radius R (whose center is

independent of the Monte Carlo run) with a constant angular

velocity such that it makes a complete revolution during the

time required to collect K observations. The initial angle for

each anchor is chosen at random uniformly in [0, 2π]. One

stationary blind node is also present in the coverage area and

its position is a RV uniformly distributed in the area. The path

loss exponentsαi,js and αi,bs are independent RVs uniformly

distributed in [2, 4], the powers P0,is are RVs uniformly dis-

tributed in [−30, 0] dBm, and the noise samples wi,j(k)s and

wi,b(k)s are normally distributed with zero mean and vari-

ance σ2 = 36. It is worth highlighting that the simulated sce-

nario does not fit the design assumption that the attenuation
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Fig. 1. ECDF of the localization error, N = 7, R = 1 m.
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Fig. 2. ECDF of the localization error, N = 7, R = 2 m.

factors are normally distributed. Figs. 1-4 show the empirical

cumulative distribution function (ECDF) of the localization

error, i.e., an estimate of P {‖r̂b − rb‖ 6 x}. Moreover, we

set K = 50 and use 100 iterations to compute the ECDF. In

Fig. 1 we plot the ECDFs of the localization error as functions

of x (in meters) for N = 7 and R = 1 m. As we can see, both

the H-ML and NH-ML localizers provide basically the same

performance. From Fig. 2 we can observe that an increase of

the radius to R = 2 m produces a better performance for the

NH-ML algorithm. Figs. 3 and 4 show the results for N = 10
and radius R = 1 m and R = 2 m, respectively. From these

figures we see that the NH-ML outperforms the H-ML even

for small values of R; again, as R increases the performance

gap between NH-ML and H-ML increases; this can be eas-

ily understood by recalling that matrix Q tends to become

ill-conditioned when anchors tends to be stationary. In partic-

ular, for N = 10 and R = 2 m (Fig. 4), in half of the cases,

the localization error of the NH-ML algorithm is well below

10 m while that of the H-ML one is twice larger.
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Fig. 3. ECDF of the localization error, N = 10, R = 1 m.
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Fig. 4. ECDF of the localization error, N = 10, R = 2 m.

5. CONCLUSIONS

In this paper, we have dealt with the problem of RSS-based

self-localization of a blind node based upon the statistical

path loss model and assuming a non-homogeneous scenario.

The attenuation factors of the anchor-to-blind links have been

modeled as random quantities with unknown distributional

parameters. Within this framework, a ML localization algo-

rithm has been designed, where the unknown channel parame-

ters are firstly estimated resorting to a set of anchor-to-anchor

measurements. Some simulation studies have been presented

to illustrate the performance of the proposed approach. The

analysis indicates that the Bayesian framework could be a vi-

able means to deal with non-homogeneous environments.

6. REFERENCES

[1] N. Patwari, J. Ash, S. Kyperountas, A. O. Hero III,

R. Moses, and N. Correal, “Locating the nodes: Coop-

4250



erative localization in wireless sensor networks,” IEEE

Signal Processing Magazine, vol. 22, no. 4, 2005.

[2] S. Gezici, “A survey on wireless position estimation,”

Wireless Personal Communications, special issue on

Towards Global and Seamless Personal Navigation,

vol. 44, no. 3, 2008.

[3] F. Gustafsson and F. Gunnarsson, “Mobile positioning

using wireless networks,” IEEE Signal Processing Mag-

azine, vol. 22, no. 4, 2005.

[4] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor

network localization techniques,” Computer Networks,

vol. 51, no. 10, 2007.

[5] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey

of wireless indoor positioning techniques and systems,”

IEEE Trans. on Systems, Man and Cybernetics — Part

C: Applications and Reviews, vol. 37, no. 6, 2007.
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[20] T. Roos, P. Myllymäki, and H. Tirri, “A statistical mod-

eling approach to location estimation,” IEEE Trans. on

Mobile Computing, vol. 1, no. 1, 2002.

[21] S. Kim, H. Jeon, and J. Ma, “Robust localization with

unknown transmission power for cognitive radio,” in

IEEE Military Communications Conference (MILCON),

2007.

[22] L. Lin, H. C. So, and Y. T. Chan, “Accurate and sim-

ple source localization using differential received sig-

nal strength,” Digital Signal Processing, vol. 23, no. 3,

2013.

4251


