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ABSTRACT
A key challenge in multi-target tracking is that the number
of possible measurement-to-target associations grows expo-
nentially with the number of targets. The popular PMHT
approach bypasses this problem by using an arguably wrong
assignment model that, however, allows evaluating the likeli-
hood function with complexity linear both in numbers of tar-
gets and of measurements. Unfortunately, the resulting track-
ing quality may suffer due the wrong assignment model. In
this paper, we propose a hybrid data association model that
combines both the PMHT and original models. In this vein,
the likelihood function can be evaluated efficiently in poly-
nomial time while still providing tracking results close to the
exact (but, in large scale cases, intractable) solution resulting
from the original “correct” model. The feasibility of the new
hybrid assignment model is demonstrated by means of maxi-
mum likelihood estimation of closely-spaced targets. Exten-
sion to marginalized probability calculation – that is, the joint
probabilistic data association filter (JPDAF) [1] is in [2].

Index Terms— Data association, PMHT, JPDAF, Maxi-
mum Likelihood

1. INTRODUCTION

Multi-target tracking deals with the problem of estimating the
states of several targets based on sensor measurements, where
the association of measurements to targets is unknown [1].
For many sensors such as radar or sonar, the most realistic as-
sociation model assumes that each target may give rise to at
most one measurement per scan (in the following called the
1-2-1 model). Unfortunately, the number of feasible associ-
ation hypotheses under this model grows exponentially with
the number of targets, so that fast suboptimal methods are
required. For example, in the context of the Joint Probabilis-
tic Data Association Filter (JPDAF) [1], several fast ad-hoc
formulas have been developed for calculating marginal asso-
ciation probabilities [3, 4, 5]. In [6], targets are decoupled by
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treating targets as clutter, and the Nearest Neighbor Filter [7]
works with the most probable hypotheses, which comes with
a significant loss of optimality.
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Fig. 1: Example: Measure-
ments y1,y2,y3 and targets
x1,x2 .

A different line of re-
search abandons the in-
tractable 1-2-1 model in
favor of a (intentionally
wrong) so-called many-2-
1 model [8] that models the
measurement origins as in-
dependent discrete random
variables. As the result-
ing likelihood function can
be efficiently evaluated as a product, the many-2-1 model
became a popular alternative to the 1-2-1 model. For ex-
ample, the many-2-1 model is used within the Probabilistic
Multi-Hypothesis Tracker (PMHT) [9] and particle filters in
[10, 11]. In general, the modeling mismatch resulting from
assuming the many-2-1 model can often be neglected. For
example, [12] shows that similar results are obtained for both
models when performing maximum likelihood estimation of
a single target. Nevertheless, with an increasing number of
closely-spaced targets the modeling mismatch more and more
impacts the estimation quality.

This paper develops a novel assignment model that is
closer to the 1-2-1 model than the many-2-1 model, while
still preserving a non-exponential complexity. This so-called
hybrid model systematically combines 1-2-1 assignments
with many-2-1 assignments. The hybrid model is param-
eterized by a natural number ns. If ns equals the number
of targets, the 1-2-1 model is obtained and for ns = 0, it
becomes the many-2-1 model. We show that for ns > 0,
the novel model provides a more accurate approximation to
the (intractable) 1-2-1 model than the many-2-1 model. Fur-
ther, for fixed ns, the likelihood function can be evaluated in
polynomial time with respect to the number of measurements
and targets. All told, in contrast to existing (often heuristic)
approximations to the 1-2-1 model, the hybrid model can be
seen as a systematic approximation that is guaranteed to be
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(a) 1-2-1 Model.
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(b) Many-2-1 Model.

Fig. 2: Assignment events (for the special case m = n): In
the 1-2-1 model, each measurement is assigned to exactly one
target. The many-2-1 model allows several measurements to
be assigned to a single target (see target 3).

“lower bounded” by the many-2-1 model.

2. PROBLEM DESCRIPTION

The individual target state vectors (see Fig. 1) are denoted
as x1,k, . . . ,xn,k, where k is the time and n the number of
targets. The stacked state vector of all individual targets is
defined as

xk =
[
xT
1,k, . . . ,x

T
n,k

]T
(1)

and the set of target indices is defined as T = {1, . . . , n}.
For the sake of simplicity, we assume a deterministic motion
model for the states, i.e., xk+1 = Fk(xk), where Fk is the
system function. At each time k, m measurements

yk =
[
yT
1,k, . . . ,y

T
m,k

]T
with index set M = {1, . . . ,m} are available. The (un-
known) measurement-to-target assignment

ak := [a1,k, . . . , am,k]
T ∈ T m

0 (2)

assigns each measurement yi,k to a target xai,k, where
T0 := T ∪ {0} and ai,k = 0 means that the measure-
ment is a false measurement not originating from any target.
For a given measurement-to-target assignment, the likelihood
function for the stacked state is written as

p(yk | xk, ak) =
∏
i∈M

p(yi,k |xai,k) , (3)

where p(yi,k |xai,k) is the likelihood for the xai,k given that
measurement yi,k stems from target ai.

The final likelihood function results from marginalizing
over all association events

p(yk | xk) =
∑

ak∈TM
0

p(yk | xk, ak) · p(ak) , (4)

where p(ak) denotes the a priori probability of an association.
In the following sections, we omit the time index k as the

focus lies on the measurement model.
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(a) Valid assignment.
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(b) Non-valid assignment.

Fig. 3: Hybrid measurement model for given s1 and s2, i.e.,
ns = 2. Exactly one measurement has to be assigned to s1
and s2 (note that we assume detection probability of 1).

3. USUAL ASSIGNMENT MODELS

3.1. 1-2-1 Assignment Model

The 1-2-1 model [1] assumes that each target may produce at
most one single measurement per time k (see Fig. 2a).

In this paper, we make the pedagogical assumption that
each target is assigned to exactly one measurement, i.e., the
probability of detection is 1 (see Remark 1 on how to incorpo-
rate non-unity detection). False measurements may occur and
a diffuse prior is used for their number. Under this assump-
tion, m ≥ n and each target is assigned to exactly one mea-
surement. In total, there are

(
m
n

)
· n! feasible assignments. If

each assignment is a priori equally probable, the prior associ-
ation probability in (4) becomes

p121(a) = 1

(mn)·n!
(5)

for a valid assignment a and otherwise p121(a) = 0. Based
upon this 1-2-1 assignment model, one has to enumerate an
exponentially increasing number of association hypotheses in
order to calculate the likelihood function (4).

3.2. Many-2-1 Assignment Model

The many-2-1 model [9] assumes that the association variable
specifying the origin of a given measurement is independent
of all others’, i.e., the a priori assignment probability can be
written as

pM21(a) =
∏
i∈M

pM21(ai) . (6)

Due to this independence assumption, several measurements
may be assigned to the same target (see Fig. 2b). However,
this independence assumption also allows us to rewrite (4) as

p(y | x) =
∏
i∈M

∑
l∈T0

p(yi | xl) · pM21(ai = l) , (7)

which can be evaluated in linear time depending on the mea-
surements and targets, i.e., O(mn).

4. HYBRID ASSIGNMENT MODEL

In the following, we introduce an assignment model that does
not require the enumeration of an exponential number of hy-
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potheses, but that is still closer to the 1-2-1 model than the
many-2-1 model.

First, assume that a specific many-2-1 model, a 1-2-1
model, and a parameter ns with 0 ≤ ns ≤ n is given. Then,
we require that the 1-2-1 model holds for ns targets, where
these ns targets are selected uniformly from the set of targets.
For the remaining targets, the many-2-1 model is used, i.e.,
multiple assignments are allowed (see Fig. 3).

More formally, the selection of the ns targets is modeled
with a random vector

s = [s1, . . . , sns
]
T ∈ T ns ,where (8)

p(s) = 1

( n
ns
)

(9)

if sl < sl+1 for all 1 ≤ l < ns, and else p(s) = 0. In this
manner, each subset of ns targets is equally probable. Each
target xsi is assigned to exactly one measurementmi, i.e., we
define the target-to-measurement assignment

m = [m1, . . . ,mns
]
T
, with (10)

p(m) = 1

(m
ns
)·ns!

(11)

if all mi ∈ M are distinct, and else p(m) = 0. In the fol-
lowing, we use the abbreviations T s := {s1, . . . , sns} and
Ms := {m1, . . . ,mns}. Then, for the remaining targets
T \ T s and measurements M \ Ms, the many-2-1 model
is imposed, so that

p(a |m, s) :=
∏

i∈M\Ms

pM21(ai | ai ∈ T \ T s) (12)

if amj
= sj for all 1 ≤ j ≤ ns and else pM21(a |m, s) = 0.

Marginalizing out m and s gives the prior association
probabilities, however, here we first calculate the likelihood
given s, m and then marginalize. In this manner, (4) becomes

p(y | x) =
∑
s

∑
m

p(m, s)

ns∏
j=1

p(ymj
| xsj )·

∏
i∈M\Ms

 ∑
l∈T0\T s

p(yi | xl) · pM21(ai = l)

 . (13)

Remark 1. Detection probabilities in the 1-2-1 part of the hy-
brid model can be incorporated in (10) by allowing targets to
be undetected and changing the a priori probabilities accord-
ing to the detection probabilities. However, from a practical
point of view, there is no need to explicitly consider detection
probabilities as non-detections are captured by the many-2-1
part of the hybrid model.

Remark 2. Implicit to (13), via the summation over s, is the
summation over the selection of all sets of ns measurements
over which the 1-2-1 assignment model holds, see Table 1.

meas 1 1 1 1 1 2 2 3 3 2 2 3 3
meas 2 2 2 3 3 1 1 1 1 2 3 2 3
meas 3 2 3 2 3 2 3 2 3 1 1 1 1
meas 1 2 2 2 2 1 1 3 3 1 1 3 3
meas 2 1 1 3 3 2 2 2 2 1 3 1 3
meas 3 1 3 1 3 1 3 1 3 2 2 2 2
meas 1 3 3 3 3 1 1 2 2 1 1 2 2
meas 2 1 1 2 2 3 3 3 3 1 2 1 2
meas 3 1 2 1 2 1 2 1 2 3 3 3 3

Table 1: Example hybrid assignments for the case of 3 targets
and measurements, and ns = 1. The top table indicates the
targets to which the measurements are assigned for s = [1],
middle for s = [2] and lower for s = [3].

4.1. Special Cases

Obviously, for ns = n, the 1-2-1 model is obtained and for
ns = 0, the many-2-1 model is obtained.

4.2. Computational Complexity

In order to compute (13) one has to consider all
(
n
ns

)
subsets

T s with cardinality ns and all
(
m
ns

)
· ns! possible 1-2-1 as-

signments to measurements. In fact the many-2-1 part in the
sum can be calculated in constant time once the full many-2-1
likelihood has been pre-calculated and the sums are enumer-
ated in a proper order. As a consequence, the time complexity
for (13) is

O

((
n

ns

)
·
(
m

ns

)
· ns!

)
. (14)

For example, for ns = 1, the complexity is the same as for
the plain many-2-1 model, i.e., O (mn). For ns = 2, the
complexity is O

(
m2n2

)
.

4.3. Approximation Quality

In the following, we show that the hybrid association model is
a better approximation for the 1-2-1 model than the many-2-1
model in case ns > 0 and the approximation quality increases
with increasing ns. We assume that in the many-2-1 model
pM21(ai) =

1
n+1 for i ∈ T0. Let u(a) denote the number of

targets in the assignment a that are assigned to exactly one
measurement. Then, for the hybrid model, the probability of
an assignment is

pH(a) =
∑
m

∑
s

p(a |m, s) · p(m, s)

=
(u(a)

ns
)

( n
ns
)
· 1

(m
ns
)·ns!

· 1
(n−s+1)(m−s) , (15)

where
(
u(a)
ns

)
:= 0 for u(a) < ns. Hence, pH(a) ∼

(
u(a)
ns

)
,

which means that assignments with more “unique” targets
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(a) Targets (dots) and example
measurements for the first time
step (crosses).
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(b) ML Estimate for the first time
step.
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time step.
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(d) MOSPA: High noise, 5th
time step.

Fig. 4: Evaluation with 6 targets: 1-2-1 model (blue), many-
2-1 model (red), hybrid model with ns = 1 (magenta), and
hybrid model with ns = 2 (green).

(meaning u(a) is greater) are more probable, and the larger
ns becomes the more this probability increases. In the plain
many-2-1 model, however, the probability of a 1-2-1 as-
signment is the same as for non 1-2-1 assignments, i.e.,
pM21(a) = 1

(n+1)m .
Note that a similar argument holds also for many-2-1 as-

signments with unequal association probabilities.

5. EVALUATION

The hybrid model is evaluated by means of maximum like-
lihood estimation of multiple targets similar to [12]. For the
sake of simplicity, the targets are stationary, i.e., xk+1 =
xk. The state of an individual target consists of the two-
dimensional target position, i.e., xi,k ∈ R2. A sensor
supplies noisy measurements of the target positions, i.e.,
yi,k = xai,k + vi,k, where vi,k is zero-mean Gaussian
noise. We consider two different covariance matrices for
vi,k, i.e., medium noise Cv = diag(0.5, 0.5) and high noise
Cv = diag(2, 2). The number of clutter measurements per
scan is Poisson distributed with mean λ = 0.5.

We consider a scenario with 6 targets (see Fig. 4a) and
a scenario with 9 targets (see Fig. 5a ). For the purpose of
illustration, the maximum likelihood estimates for the 1-2-1
model, the many-2-1 model, and the hybrid model are de-
picted (Fig. 4b and Fig. 5b) for the first time step k = 1 with
the measurements given in Fig. 4a and Fig. 5a. It can be seen
that the hybrid model yields estimates whose quality is be-
tween the 1-2-1 model and the many-2-1 model.

Fig. 4 also shows the estimation results after 5 time steps,
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Fig. 5: Evaluation with 9 targets: many-2-1 model (red), hy-
brid model with ns = 1 (magenta), and hybrid model with
ns = 2 (green).

where the overall likelihood function has been maximized.
Since data and targets are unlabeled – and hence there is no
natural MSE scoring – the Optimal Sub-Pattern Assignment
metric (OSPA) distance [13] is used to compare performances
(averaged over 20 runs). The simulations show that for the 6
target scenario, the 1-2-1 model is approximately 20% better
than the many-2-1 model. With ns = 2, the hybrid model
with ns = 2 is around 10% better than the many-2-1 model.
For the 9 target scenario, the hybrid model with ns = 2 is
around 8− 9% better than the many-2-1 model.

The 1-2-1 model is not evaluated in the 9 target case as
it takes an unreasonable time. For example, if there are 12
measurements, the complexity for the 1-2-1 model is

(
12
9

)
·

9! = 79833600. For the many-2-1 and hybrid model with
ns = 1, the complexity is 9 · 12 = 108. For the hybrid model
with ns = 2, the time complexity is

(
12
2

)
·
(
9
2

)
· 2! = 4752.

In summary, the 1-2-1 model gives the best results as it
is the correct model. However, the hybrid model allows for a
significant faster calculation of the likelihood (for both 6 and
9 targets), while still providing better results than the many-
2-1 model.

6. CONCLUSIONS AND FUTURE WORK

We have presented a hybrid data association model that serves
for deriving systematic approximation to the original in-
tractable 1-2-1 model, where the approximation quality is
guaranteed not worse than assuming a many-2-1 model.

In the future, we will use this model within particle filters;
for marginal associations in the JPDAF see [2].
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