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ABSTRACT
In modern heterogeneous wireless networks, the task of supporting
fairness along with user priorities and concurrently achieving the
highest possible system throughput is desirable and challenging.
Herein, a class of practical cumulative distribution function (CDF)
scheduling algorithms are developed to achieve these goals. These
algorithms are used when the channel fading model is unknown.
The mapping from channel quality information (CQI) to the real
CDF is unknown but is constructed exploiting the order statistics
of the CQI sequence. The constructed CDF mapping methods are
shown to converge to the actual CDF. Specifically, one algorithm
uses the expected value of the ordered CDF scheduling while others
called Non-parametric CDF scheduling (NPCS) algorithms recon-
structs the CDF with an extra interpolation step. By collecting a
moderate number of CQI data, the algorithms almost achieve the
system throughput of CDF scheduling as if the CDF is known.
Throughout the work, CDF scheduling algorithms, supported by
simulations, are shown to be able to effectively support fairness and
frequently outperform, and are potential alternatives to, the well
known Proportional Fair (PF) scheduling method.

Index Terms— CDF scheduling, order statistics, feedback, mul-
tiuser, proportional fair.

1. INTRODUCTION

In wireless communications, exploiting multiuser diversity is critical
to improving the overall system performance [1]. In general, mo-
bile users can be at any location in a wireless network service area
which leads to a diversity in pathloss, fading condition and channel
statistics. The base station (BS) needs, on one hand to exploit mul-
tiuser diversity to maximize spectrum usage efficiency and on the
other hand guarantees fairness and services to all the users to en-
sure that all the users are adequately served. Typically, these objec-
tives conflict and so a compromise between system throughput and
fairness has to be made. Among the existing scheduling methods,
proportional fair scheduling (PF) [2] is widely used because it has a
good balance between performance, fairness and simplicity. How-
ever, the resource allocation for users in PF is not easy to control
and might need adjustments overtime to satisfy users’s requirements
in a long term manner. Also, even though it exploits multiuser di-
versity, the efficacy of the approach is unclear in an heterogeneous
environment. This calls for better algorithms and we consider cumu-
lative distribution function (CDF) based scheduling in this context.
CDF scheduling, which is called CS in [3], can control resource al-
location precisely and can exploit multiuser diversity effectively in a
heterogeneous environment. However, its comparative performance
is unknown and the general approach has received much less atten-
tion. As a result, there are no or limited practical implementations of
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CDF scheduling [4]. A principal challenge in implementation is that
the scheduling method requires knowledge of the CDF of the CQI
for each user which is typically unknown, changing frequently and
location dependent. Motivated by the favorable properties of CDF
scheduling, we develop non-parametric CDF scheduling methods to
make CDF scheduling practical and along the way show its advan-
tages over the widely used PF scheduling.

Literature review: Because guaranteeing services for all users
is of utmost importance in wireless communications systems, var-
ious fair scheduling methods have been developed. Overview of
scheduling algorithms are discussed in [5–7]. More specifically,
commonly used fairness algorithms can be listed as temporal fair-
ness [8], game theory based fairness [9], utilitarian fairness [10–12],
Max-Min fairness [13, 14] which maximizes the minimum among
rates of the users, round robin in [15] and max rate scheduling which
are special cases of proportional fairness (PF) in [16–18]. Fairness
can also be supported by using utility functions in [19], minimizing
potential delay as in [5]. Though many algorithms have been devel-
oped, PF scheduling [2] is widely used because it offers a good trade-
off between exploiting multiuser diversity [20–23] and maintaining
fairness among users. Characteristics of the algorithm such as con-
vergence behavior, instability as well as its applicability have also
been studied in [24–26]. In general, PF is hard to analyze and the
approach is unable to exactly control resource allocation for users.
Furthermore, its effectiveness in a heterogeneous environment also
leaves room for improvement.

A viable alternative is the CDF scheduling proposed in [3]. It
is shown to be able to control precisely the probability of resource
allocation for users, exploit multiuser diversity and deal with hetero-
geneous environments. The CDF scheduling is leveraged in a gen-
eral multicell network in [27], in a partial feedback wideband relay
system in [28] and in a random beamforming framework in [29]. All
these works assume knowledge of the CDF of the channel, which is
an idealistic and simplifying assumption. Acknowledging that the
CDF is in general unknown and hard to learn [3], a nice practical
scheme is proposed in [4] which can be applied to systems which
support discrete rates. However, there are unanswered questions
with respect to the optimality of the approach and also the conver-
gence behavior, an important consideration in channel with short co-
herence time. Despite these concerns, the method developed in [4] is
very interesting, motivational, and an important step in making CDF
scheduling practical. Our approach is to examine CDF scheduling
without being constrained by the finite number of discrete data rates
and develop effective techniques. The hope is that the developed
methods can provide insight, advance the state of the art, and lead to
potential alternatives to the discrete data rate case, if desired.

The contributions of our work are as follows.

• Firstly, we propose to use historical data to capture more de-
tailed information about the distribution, not just the mean as
in PF scheduling, for scheduling purposes. Herein, a class of
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NPCS algorithms which are first of this type, are developed.
These algorithms are used when the channel model such as
pathloss, type of fading is unknown at the BS. In NPCS, the
order statistics of the CQI sequence of each user are used di-
rectly for the scheduling process. These algorithms can be
understood as, but not restricted to, exploiting empirical CDF.
In particular, they can be cast in a framework to maximize an
objective function of choice such as throughput, bit error rate,
among others. The variables of optimization are the map-
ping functions which reflect how the CQI sequence is used
for scheduling.

• Secondly, two specific algorithms NPCS-1 and NPCS-2,
which aim at best exploiting the ordered CQI are proposed.
Another advantage of NPCS algorithms is that each user
memorizes and orders its own channel CQI and feeds back
only the ordered index. This helps to offload some processing
requirement to the users.

• Thirdly, the throughput of the proposed algorithms are veri-
fied and shown to be superior to the widely used PF schedul-
ing frequently. Though the throughput of these algorithms are
derived in Rayleigh fading, numerical results in Nakagami-m
and log-normal fading are also observed with similar conclu-
sions.

• Lastly, it is shown that the algorithms developed approach the
performance of a CDF scheduler with perfect knowledge very
rapidly. When compared with the performance achieved with
exact CDF knowledge, the algorithms achieve 95 → 97%
of the performance with only 10 i.i.d. channel samples, and
achieve 99% the performance with only 30 i.i.d. samples.

2. SYSTEM MODEL

We consider a multiuser system where the base station (BS) has a
single antenna and the K users are also each equipped with a single
antenna. A downlink system is specifically assumed in the presen-
tation and similar considerations apply to the uplink system. At a
given time, the BS selects a user k and transmits a symbol sk to this
user. The received signal yk is

yk = hk
√
ρsk + nk, (1)

where hk ∈ C1×1 is the channel from the BS to the selected user k
which is assumed to be independent in time, nk ∼ CN(0, 1) is the
additive noise at user k and ρ is the transmit SNR. The instantaneous
CQI zk and SNR xk are given by zk = |hk|2 and xk = ρzk. Also,
we denote the random variables associated with the CQI and SNR
of user k by Zk and Xk respectively. Throughout this work, we
use upper case letters, e.g. Z, to denote a random variable and the
corresponding lower case letters, e.g. z, to denote a certain value for
that random variable.

To select a user to be served on the resource, CDF scheduling [3,
28] is used. Upon receiving the CQI zk from users, fed back through
an appropriate feedback channel, the BS utilizes the corresponding
CDF of these CQI to evaluate a service metric and selects the user
k∗ with the highest value.

k∗ = arg max
k

FZk (zk)
1
wk , (2)

where FZk (.) is the CDF of the CQI of user k. Herein, FZk (.) is
assumed unknown. The weight wk represents the priority assigned
to user k, which is equivalent to the proportion of the resource al-
located to the user. The weight wk is preassigned for all the users
k = 1, . . . ,K such that

∑K
k=1 wk = 1.

3. NON-PARAMETRIC CDF SCHEDULING

We assume to possess Nk CQI samples from the current and pre-
vious channel uses for each user k and use these samples for the
CDF scheduling algorithm. The number of CQI samples collected
for each user is assumed different which depends on the user chan-
nel’s coherence time and its activity levels. These Nk samples are
sorted in an ascending order zk(1) ≤ · · · ≤ zk(Nk). We also assume
that the current CQI, denoted by zIk,, is in the ik-th position in the
ordered set, i.e. zIk = zk(ik). If the CDF was known, then the ran-
dom CQI variable Zk would be mapped to a random variable Uk,
uniformly distributed in [0, 1], using the CDF, i.e. Uk = FZk (Zk).
Since the CDF is a nondecreasing function, the CDF mapping would
map the ordered CQI to an ordered set of values in the interval [0, 1],
i.e. the CDF mapping would result in uk(i) = FZk (zk(i)) which are
also ordered; uk(1) ≤ · · · ≤ uk(ik) ≤ · · · ≤ uk(Nk). Hence, the
current CQI would map to uk(ik), the ik-th position and we use the
indicator function 1uk(ik)

to denote that the most recent CQI has po-
sition ik in the order statistics. Though we do not know the exact
values of each uk(ik), we know their statistics [30], and can make
use of them to develop a practical scheduler. One option is to use
the average value uk(ik) for the CDF scheduler leading to a scheme,
that we call ECS, or using the expected value of the ordered CDF.
• Initialization: For each user k, collect Nk CQI including the

current instantaneous CQI zIk and the past (Nk − 1) ones.
• Sort the CQI in an ascending order. Identify the position of

the current CQI zIk, say ik.
• Calculate the expected value1 of the variable obtained by the

CDF mapping of the ordered variable. This is given by qk =
E{Uk(ik)} = ik

Nk+1
, k = 1, ..,K. [30].

• Select2 a user k∗ = arg maxk q
1
wk
k .

Using the expected value of the ordered CDF is simple and can be
an option for CDF scheduling. When we investigate the portion of
resource allocated to the users, this method does not guarantee the
desired resource allocation. Because the mismatch between the de-
sired and the actual allocation can be significant, we are interested in
algorithms which can provide better control over resource allocation.

For this purpose, we consider the construction of a mapping
from zk(i) to the i-th element ũk(i) preserving some statistical prop-
erties of uk(i), and ensure that the resultant random variable Ũk is a
uniform random variable on the interval [0, 1], mimicking the statis-
tics of Uk. A minimum requirement on fũk(i)(x),which denotes the
density function of ũk(i), is that it satisfy two following conditions∫ 1

0

fŨk(i)(x)dx = 1, ∀i = 1, . . . , Nk, ∀k (a)

1

Nk

Nk∑
i=1

fŨk(i)(x) = 1, ∀x, ∀k (b) (3)

where (a) comes from the properties of a density function and (b)
comes from the fact thatNk equally likely ordered random variables
Ũk(i) constitute an uniform random variable Ũk on the interval[0, 1].
Any mapping that satisfies this properties results in a mapping from
the CQI to a uniform random variable on the interval [0, 1] and can
potentially be the basis of the NPCS algorithm as described below.

1Instead of the mean, the median or any specifically manipulated value

e.g. E
{
U

1
wk
k(ik)

}
can be used.

2If two users have the same qk , a tie breaking rule has to be implemented.
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• Each user generates a sample value for resource allocation

– Initialization: User k collects Nk CQI samples.

– Sort the CQI in an ascending order and identify the po-
sition of the instantaneous CQI, say ik.

– Generate the corresponding sample value ũk for user k
to be used for resource allocation.

∗ Generate ũk(ik) a sample using the pdf fŨk(ik)(·)
and set ũk = ũk(ik).

• Select a user k∗ = arg maxk ũ
1
wk
k .

The achievable system throughput can be shown to be

RNPCS =

K∑
k=1

Nk∑
i=1

1

Nk
Pr{k∗ = k|1uk(ik)

}Rk(ik), (4)

where Pr{1uk(ik)
} = 1

Nk
. The rate Rk(ik) =

∫∞
0

log2(1 +

x)fXk(ik)
(x)dx depends only on the distribution of Xk(ik) and

does not depend on the mapping technique.

3.1. NPCS-1

From the position ik-th of the recent CQI on the ordered CQI se-
quence, the algorithm generates Ũk(ik) with the same distribution as
Uk(ik). Note that the density function of Uk(ik) is known because it
is the ik-th order statistic of Nk i.i.d random variables uniform on
the interval [0, 1]. This mapping satisfies the constraints in (3).

Proposition 1. The NPCS-1 mapping has the following properties

1. The expectation of the i-th variable Ũk(ik) in the constructed
ordered sequence as described in NPCS-1 algorithm is given

E{Ũk(ik)} =
ik

Nk + 1
, (5)

2. The mapping from the CQI to a variable Ũk(ik) is unbiased,
i.e. E(Uk(ik)) = E(Ũk(ik)).

3. The variance of the difference between Uk(ik) and Ũk(ik) is

σ2
Uk(ik)−Ũk(ik)

= 2
ik(Nk + 1− ik)

(Nk + 1)2(Nk + 2)
−−−−−→
Nk→∞

0. (6)

Proof. The detail proof is provided in Appendix 6.

Given ũk = ũk(ik), user k is selected if ũ
1
wj

j < ũ
1
wk
k(ik)

, ∀j 6= k.
With a value of ũk(ik), probability user k is selected is Pr{k∗ =

k|ũk(ik); 1uk(ik)
} =

∏
j 6=k ũ

wj
wk
k(ik)

= ũ
1
wk
−1

k(ik)
. The probability user

k is selected, given its channel’s instantaneous CQI has position ik-
th, is calculated by taking expectation over value of Ũk(ik),

Pr{k∗ = k|1uk(ik)
} =

∫ 1

0

x
1
wk
−1
fŨk(ik)

(x)dx

= Nk
(
Nk−1
ik−1

)
B

(
ik +

1

wk
− 1, Nk − ik + 1

)
, (7)

where fŨk(ik)
(x) is the distribution of the ik-th order statistics [30]

of Nk i.i.d random variables uniform on the interval [0, 1] and the
last equation follows from the definition of Beta function [31, 8.380].
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Fig. 1. The precision of the mapping from ordered CQI to the quan-
tized and interpolated CDF - the top figure is the average of the mag-
nitude difference and the lower figure is the variance of the differ-
ence between the real CDF value with the constructed one.

To provide an illustration of system performance, we consider
all the links to the users to be under Rayleigh fading. Then, the distri-
bution of the SNR can be represented by FXk (x) = 1−e−x/ρk , x >
0, with ρk = ρck is the received SNR of the user k with ck =
E{Zk} is the pathloss from the BS to user k.

Theorem 1. In a multiuser system under Rayleigh fading with K
users, the overall system throughput for NPCS-1 is

R1 =
Nk
ln 2

K∑
k=1

Nk∑
ik=1

(
Nk−1
ik−1

)
B

(
ik +

1

wk
− 1, Nk − ik + 1

)

×
ik−1∑
l=0

(
ik−1
l

) (−1)l+1e
Nk+l−ik+1

ρk

Nk + l − ik + 1
Ei

(
−Nk + l − ik + 1

ρk

)
,

(8)

where B(·, ·) is beta function, Ei(.) is the exponential integral
function [31], and Qk,ik = ik

Nk
; wk and ρk are correspondingly the

assigned weight and the received SNR of user k.

Proof. The result is obtained by combining (4) and (7).

3.2. NPCS-2
In this method, the random variable Ũk is created from ũk(ik)
which is uniformly distributed in [Qk,ik−1, Qk,ik ]. The boundary
points Qk,ik are set equally spaced as in an uniform quantizer [32].
Qk,ik = ik∆k, for ik = 0, . . . , Nk and ∆k = 1

Nk
. The values

for ũk(ik) is generated employing a random variable uniformly
distributed in [Qk,ik−1, Qk,ik ]. This mapping also satisfies the con-
straints in (3). The performance of NPCS-2 can be found similarly
and can be referred to [33].

4. SIMULATION RESULTS

To evaluate the analytical results and the performance of the pro-
posed approaches, we consider a multiuser system with K = 10
users. Each user k is assigned weights wk = (k + 1)ak, with ak is
the normalization parameter to guarantee that

∑K
k=1 wk = 1. The

link from the BS to the users are under Rayleigh fading. The pathloss
of each user k is ck = be−λk with λ = 0.1 and b is a constant so∑K
k=1 ck = K. The transmit SNR at the BS is set ρ = 10dB.
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Fig. 2. Comparison between CDF and PF scheduling as a function
of collected channel data Nk under Rayleigh fading.

In Fig. 1, the precision of the mappings developed is evaluated.
The metric used for the evaluation are |E(Ũ −U)| and var(Ũ −U),

where Ũ and U are the estimated and actual random variables. The
first metric is a measure of unbiasedness and the second is a measure
of the mean squared error. Both ECS and NPCS − 1 are unbiased
estimates and so have small |E(Ũ − U)|. In terms of mean squared
error (MSE), NPCS-2 has smaller MSE than NPCS-1. However,
both have higher MSE than ECS because of the randomization in-
troduced in these methods in order to generate a uniform random
variable. Both the average error and the MSE decrease as the num-
ber of samples Nk increase and go to zero when Nk →∞.

The performance of CDF and PF scheduling are compared in
Fig. 2. To ease the comparison, we consider a system with two users
with the difference in the average received SNR being 10dB. The
performance using PF scheduling with its parameter β [34] is inves-
tigated first. For each value of β, the allocation probability for the
users, which is collected by averaging over 106 experiments, is used
to set the corresponding weights in CDF scheduling, e.g. weight of
user 1 is set to equal Pr{k∗ = 1} in PF scheduling. We note that
though the CDF scheduling with perfect channel knowledge does
not depend on Nk, its performance is not a constant in Fig. 2 be-
cause weights for users which is taken based on the performance
of PF scheduling method, change slightly. When β . 0.6, the PF
scheduling is close to Opportunistic scheduling which favors and al-
most always (with probability > 90% in this experiment) allocates
resource to the user with higher SNR. In this case, PF scheduling is
better than CDF scheduling. When priorities of users are stressed
more, it is observed that CDF scheduling outperforms PF schedul-
ing. This situation happens frequently when we want to allocate
comparable amounts of resource to the users. Similar results are ob-
served with other combinations of fading types.

The performance of the proposed scheduling methods as a func-
tion of number of samples Nk is shown in Fig. 3. From the figure,
the performance of ECS is better than NPCS-2 for large Nk. How-
ever, this small throughput incentive is achieved with a tradeoff in the
inaccuracy in resource allocation for users. In our experiments, such
inaccuracy can easily exceed 10% for many users. It can be seen that
NPCS-2 obtains higher system throughput than NPCS-1 does. When
Nk increases, the achieved system throughput increases as expected
since we obtain more accurate information about the channels of the
users. With Nk large enough, e.g. Nk > 30 samples, the loss in
throughput is under 1% in comparison to the case when the chan-
nel distribution is known perfectly. This bodes well for CDF based
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Fig. 3. Performance of practical CDF scheduling as a function of
collected channel data Nk under Rayleigh fading.

methods as this requirement is typically easy to obtain in real net-
works where the fast fading is of the order of milliseconds and the
channel model does not change significantly in seconds. For exam-
ple, if a CQI sample is collected in every 1-millisecond LTE frame, a
thousand samples will be collected in 1 second which easily enables
NPCS-2 to approach the performance of knowing perfectly the CDF
of the channel.

5. CONCLUSION

We have proposed practical approaches to enable the application of
CDF scheduling technique in heterogeneous multiuser systems. The
proposed NPCS algorithms are shown to precisely control resource
allocation for users, simple enough to be employed in real systems,
and frequently have better performance than the existing PF schedul-
ing. In the comparison with PF scheduling, the CDF scheduling
is better when the fairness among users is of major concern. For
the methods developed, the achievable throughput of each user in-
creases and quickly approaches the throughput achievable with per-
fect knowledge of the CDF.

6. APPENDIX - THE PRECISION OF THE MAPPINGS

The expectation of the ik-th variable in the constructed ordered se-
quence of CDF as described in NPCS algorithm, is

E{Uk(ik)} =

∫ 1

0

Nk
(
Nk−1
ik−1

)
xik−1[1− x]Nk−ikxdx

= Nk
(
Nk−1
ik−1

)
B(ik + 1, Nk − ik + 1) =

ik
Nk + 1

, (9)

where we get 1st equation from the PDF of the variable and by uti-
lizing the fact the CDF of a variable uniformly distributed in [0, 1] is
FU (x) = x. The end result comes from utilizing [31, 8.380] and the
definition of Beta function [31, 8.384.1]. Similarly, the variance of
Uk(ik) can be calculated

σ2
Uk(ik)

= E{U2
k(ik)
} − E{Uk(ik)}

2 =

∫ 1

0

Nk
(
Nk−1
ik−1

)
xik+1

× [1− x]Nk−1dx− i2k
(Nk + 1)2

=
ik(Nk + 1− ik)

(Nk + 1)2(Nk + 2)
, (10)

where E{U2
k(ik)
} = ik(ik+1)

(Nk+1)(Nk+2)
which is similar to the calcula-

tion in deriving the mean. The variance of Uk(ik) − Ũk(ik) is twice
the variance of Uk(ik).
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