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ABSTRACT

Distance estimation using multifrequency phases measure-
ment is a common practice in many areas of engineering.
This method brings in the issue of phase ambiguity. Some
Chinese remainder theorem (CRT) based phase unwrapping
algorithms have been suggested to solve the problem, how-
ever, these algorithms either have high complexity or lack
precision. In this paper, we propose an efficient algorithm
to reconstruct the unknown distance from the contaminated
wrapped phases. The proposed method can be separated into
two stages. The first stage is to obtain the optimal estimate of
the common remainder which is significant to the estimation.
In the second stage, the indefinite distance is estimated by
using the extended CRT. Simulations test the validity of the
proposed algorithm.

Index Terms— Distance estimation, Phase ambiguity,
Chinese remainder theorem (CRT), Robustness

1. INTRODUCTION

The localization of nodes is very important in the application
of wireless sensor network, such as environmental monitor-
ing, health care, structural monitoring and military surveil-
lance [1]-[2]. In most range-based localization methods, the
phase detection based ranging methods have the advantage of
high precision and long range simultaneously [3]-[9]. Since it
locates the nodes which are based on the phase measuremen-
t, it inevitably introduces ambiguity. To be clear, the phase
measured by the nodes is periodic, so the measured phase is
the residue wrapped by 2π, and the integer information is ig-
nored.

In order to eliminate the ambiguity, several methods have
been developed which considered phase measurements noise.
For instance, a Diophantine equation method is proposed in
[10], which needs a series of phase remainders for differen-
t carrier frequencies. However, there is no efficient method
proposed when the remainders have errors. In [3], a search-
ing method is proposed to eliminate the ambiguity. But it is
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inefficient because the measurement accuracy is hard to as-
cetain. A least square phase unwrapping estimator algorith-
m is presented to estimate the original phase in [11]. Since
the algorithm needs a special generator basis, it performs in
polynomial time. A robust Chinese remainder theorem (CRT)
method and its generalized version are proposed in [12]-[13],
where the phase ambiguity is resolved by searching process.
The computational complexity is still high when the distance
to be estimated is large. The improved closed-form robust
CRT is proposed in [14], which is more effective than the
searching methods. Regardless of the fact that it has a closed
form, the estimate is not the optimal one. In [15], a lattice
based algorithm is proposed. Although it is efficient to esti-
mate the unknown distance, it has a similar performance as
the improved closed-form robust CRT.

In this paper, we propose a novel robust CRT method to
deal with the above problem and this work is motivated by
[14] and [16]. The ranging estimation problem based on mul-
tiple carrier frequencies is converted into the robust CRT. As
common remainder is significant to the estimation, we dis-
cuss it firstly. After getting the optimal estimate, we give the
estimate of the unknown distance by using the extended CRT.
A sufficient condition of the ranging estimation is presented
base on the proposed algorithm. Finally, the method is used
to evaluate unknown distances. The effectiveness and robust-
ness of the algorithm are demonstrated by simulations.

The remaining of this paper is organized as follows. In
Section 2, we introduce the system model. In Section 3, we
present a robust CRT method. Simulation results are present-
ed in Section 4. Finally, in Section 5 this paper is ended.

2. SYSTEM MODEL

In localization applications, signal wavelength is much short-
er than the distance to be measured, so distance ambiguity
caused by signal phase wrapping is inevitable. In order to e-
liminate phase ambiguity, we use multiple carrier frequencies
to measure distance. Suppose that the unknown distance to
be estimated is d, and carrier wavelengths are λ1, λ2, . . . , λL,
then the distance d can be represented by the following con-
gruence equations [4]
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d ≡ ϕi

2π
λi mod λi, i = 1, 2, . . . , L. (1)

The congruence equations above can be resolved by CRT
after all of the parameters are quantized to integer. Let quan-
tization step be u. After quantization, we have

N ≡ ri mod Mi, i = 1, 2, . . . , L, (2)

where N = d
u , ri = ϕiλi

2πu , and Mi =
λi

u .
According to CRT [18]-[19], N can be uniquely deter-

mined if N is less than the least common multiple of all mod-
uli Mi. In this paper, we consider the extended CRT where
all the moduli have the same common factor M (M > 1) and
the remaining integers factorized by M are co-prime.

Let Mi = MΓi, i = 1, 2, . . . , L, and Γ1 < Γ2 < · · · <
ΓL are co-prime integers. We denote Γ = Γ1Γ2 · · ·ΓL, γi =
Γ/Γi, and γ̄i is the modular multiplicative inverse of γi mod-
ulo Γi. Then the solution of the extended CRT is given by the
following lemma.

For simplicity of presentation, the remainder of x modulo
M is denoted by ⟨x⟩M .

Lemma 1. [18] If N < MΓ, then congruence equations (2)
has a unique solution

N = MN0 + rc, (3)

where rc and N0 are

rc = ⟨ri⟩M , i = 1, 2, . . . , L, (4)

and

N0 = ⟨
L∑

i=1

γiγ̄iqi⟩Γ, qi = (ri − rc)/M, (5)

respectively.

Unfortunately, the phase measurements ϕi have errors in
practice due to noise. In the presence of errors, traditional
CRT is meaningless. Some searching methods were proposed
in [3],[12]-[13]. However, these methods are impractical s-
ince the procedure is computationally inefficient. In the fol-
lowing, we give an efficient robust CRT algorithm to solve the
problem.

3. ROBUST CHINESE REMAINDER THEOREM
ALGORITHM

Suppose that the ith erroneous phase be

ϕ̂i = ϕi +∆ϕi, (6)

where ∆ϕi is the error. Now, the question is how to ro-
bust estimate distance d from contaminated measurements

ϕ̂1, ϕ̂2, . . . , ϕ̂L. Equivalently, how to robust estimate N from
the contaminated remainders r̂i, where

r̂i =
ϕ̂iλi

2πu
, i = 1, 2, . . . , L. (7)

From Lemma 1 we can conclude that the common remain-
der is significant to the reconstruction. For the case of the
remainders without errors, we can get it from any of them.
However, this is not true when the remainders have errors.
Putting r̂i modulo M be r̂ci , i.e.,

r̂ci = ⟨r̂i⟩M , i = 1, 2, . . . , L.

then r̂ci may be different from each other due to the errors. S-
ince these values are obtained by modular operation, the dis-
tances in Euclidean space are inappropriate for describing de-
viation of r̂ci . To obtain the optimal estimate of the common
remainder, we introduce a kind of circular distance as follows.

Definition 1. For two angles α and β, the circular distance
between the two angles is defined as

d(α, β) = 1− cos(α− β). (8)

It is clear that the circular distance has maximum 2 when
α−β = 2kπ+π, while has minimum 0 when α−β = 2kπ,
k ∈ Z.

Putting a monotone increasing function f(x) be

f(x) =
2π

M
x, x ∈ [0,M), (9)

then we have

f(r̂ci ) ∈ [0, 2π), i = 1, 2, . . . , L.

These values can be considered as angles of unit vectors. For
convenience, we denote these angles as θi, i.e.,

θi =
2π

M
r̂ci , i = 1, 2, . . . , L. (10)

Based on the definition above, we can obtain that the summa-
tion of the deviation about variable θ is

D(θ) =
L∑

i=1

[1− cos(θ − θi)] . (11)

Let θ̂ be the angle which minimize D(θ), i.e.,

θ̂ = arg min
0≤θ<2π

D(θ). (12)

Then the optimal estimate of the common remainder r̂c can
be estimated by

r̂c =
θ̂

2π
M. (13)

Next, we give the optimal estimate of the common re-
mainder from the contaminated remainders.
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Theorem 1. The optimal estimate of common remainder r̂c

in (13) is

r̂c =
M

2π
Arg

{
L∑

i=1

cos θi + j

L∑
i=1

sin θi

}
, (14)

where Arg {·} denotes the principal value of the argument.

Proof. Denoting R =
√
(
∑L

i=1 cos θi)
2 + (

∑L
i=1 sin θi)

2,
then (11) can be rewritten as

D(θ) = L−R cos(θ − θ̂),

where θ̂ such that

cos θ̂ =
1

R

L∑
i=1

cos θi, sin θ̂ =
1

R

L∑
i=1

sin θi. (15)

It follows that

D(θ) = L−R+R sin2
(θ − θ̂

2

)
.

Obviously, the minimum of D(θ) achieves at θ̂. Note that θ̂
in (15) equals

θ̂ = Arg

{
L∑

i=1

cos θi + j
L∑

i=1

sin θi

}
. (16)

Combining (13) and (16), we can draw the conclusion.

Theorem 1 gives an effective way to estimate common
remainder. For a given erroneous remainders sequence
r̂1, r̂2, . . . , r̂L, we can obtain the corresponding angles θi
by (10). If we consider these angles as unit vectors −→xi , then
the optimal estimate θ̂ is the angle of the resultant vector
−→x1 +

−→x2 + · · · + −→xL. Thus, the optimal estimate of the com-
mon remainder r̂c can be determined by (9). Consequently,
we can obtain the estimate of N0 and N by (5) and (3),
respectively.

To sum up, we give the following robust CRT algorithm.

• Step 1: Calculate θi from ϕ̂i:

θi =
2π

M
⟨ ϕ̂iλi

2πu
⟩M . (17)

• Step 2: Calculate r̂c by (14).

• Step 3: Calculate N̂0:

N̂0 = ⟨
L∑

i=1

γiγ̄iq̂i⟩Γ, (18)

where q̂i =
[
r̂i−r̂c

M

]
, and [·] denotes the rounding inte-

ger operation.

• Step 4: Calculate N̂ by (3).

• Step 5: Calculate distance d̂ :

d̂ = uN̂. (19)

Based on the robust CRT given above, we can draw the fol-
lowing conclusion.

Theorem 2. Let τ = max1≤i≤L |∆ϕi|, and let λmax =
max{λ1, λ2, . . . , λL}. If τ < uπM

2λmax
, then

|d̂− d| < uM

4
, (20)

Proof. Putting ∆θi =
2π
M ⟨∆ϕiλi

2πu ⟩M , then we have

|∆θi| <
π

2
, i = 1, 2, . . . , L. (21)

Thus, the error between the optimal estimate θ̂ and the real
value θ satisfies ∣∣∣θ̂ − θ

∣∣∣ < π

2
. (22)

It follows from (14) that

|r̂c − rc| < M

4
. (23)

According to (7), we have

|∆ri| =
∣∣∣∣∆ϕiλi

2πu

∣∣∣∣ < M

4
. (24)

Combining (23) and (24), we have

q̂i = qi +

[
rc − r̂c +∆ri

M

]
= qi. (25)

Consequently, we obtain from (18) that N̂0 = N0. Thus,∣∣∣d̂− d
∣∣∣ = u |r̂c − rc|

<
uM

4
. (26)

4. SIMULATION AND ALGORITHM
PERFORMANCE ANALYSIS

In the simulations, the carrier frequencies are in the range
from 400 to 460 MHz. We set quantization step u = 0.1mm,
and M = 100. We choose the pair-wise relative prime pos-
itive integers to be 67, 71, 73, 74, and 75. The correspond-
ing wavelength are 0.67, 0.71, 0.73, 0.74, and 0.75 m, respec-
tively. According to (19), we have the maximum unambigu-
ous range dmax = uMΓ1Γ2 · · ·Γ5 = 1.9273 × 106m. As-
sume that the unknown distance d is uniformly distributed in
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Fig. 1. TFR versus SNR.

(0, 1.9273× 106)m. The number of the simulations is 10000
for each SNR.

Three algorithms are considered: the extended CRT [16],
the improved closed-form robust CRT [14] and our proposed
robust CRT algorithm. We take test fail rate (TFR) and root
mean squared error (RMSE) as the performance measure-
ments. In each trial, if the error of the estimate is within uM

4 ,
the trial is passed, otherwise, the trial is failed. The RMSE is
defined as

dRMSE =

√
E
{
|d̂− d|2

}
, (27)

where E {·} denotes the expectation.
Fig. 1 and Fig. 2 show that the proposed method has

much better performance than the extended CRT. This is be-
cause our method has the optimal estimation of the common
remainder, while the extended CRT estimates the common re-
mainder on a randomly selected first remainder.

It also showns that our method has a little better perfor-
mance than the improved closed-form robust CRT. When S-
NR is within 12 ∼ 14dB, our method has a lower threshold
than the improved robust CRT. This is because the estimate of
the common remainder is not optimal for the improved robust
CRT algorithm. Note that our algorithm has much lower com-
putational complexity than the improved robust CRT, which
is the other main benefit of the proposed algorithm.

When TFR is down to zero, the RMSE performance is on-
ly determined by the noise level, which will not have anything
to do with the rebuilding algorithm, that is why all these three
algorithms share the same RMSE performance when SNR is
high.

5. CONCLUSIONS

In this paper, we have proposed a robust CRT algorithm to
estimate distance based on phase detection. We first convert
the distance estimation problem into the robust CRT. We then
give the optimal estimate of the common remainder and thus
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Fig. 2. RMSE versus SNR.

the distance to be estimated. We finally applied the proposed
algorithm to estimate the unknown distances by using mul-
tiple frequencies. Simulation results demonstrate that it has
much better performance than the extended CRT algorithm.
It is also proved that it has a little better performance than the
improved closed-form robust CRT algorithm. In addition, it
has a great deal lower computational complexity.
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