
QUASI-MAXIMUM LIKELIHOOD ESTIMATOR OF MULTIPLE POLYNOMIAL-PHASE
SIGNALS

Marko Simeunović, Slobodan Djukanović, Igor Djurović
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ABSTRACT

This paper addresses the parameter estimation of multicom-
ponent polynomial-phase signals (mc-PPSs). Recently pro-
posed quasi-maximum likelihood (QML) method based on
the short-time Fourier transform (STFT) has been extended
to deal with multiple PPSs. The proposed method outper-
forms state-of-the-art parametric methods developed to deal
with multiple PPSs in terms of robustness against noise, while
attaining the Cramér-Rao lower bound.

Index Terms— Polynomial-phase signal, parameter esti-
mation, non-parametric estimation, short-time Fourier trans-
form, quasi-ML

1. INTRODUCTION

Estimation of polynomial-phase signals (PPSs) has been ex-
tensively studied in the last two decades [1–9]. These tech-
niques are based on traditional phase differentiation (PD) ap-
proach, where the phase order of the underlying PPS is de-
creased until a complex sinusoid is obtained [1–3]. The sinu-
soid frequency is proportional to the highest order PPS coef-
ficient. Therefore, estimation of this coefficient boils down to
the sinusoid frequency estimation. Lower order coefficients
are obtained by repeating the same procedure on the original
PPS dechirped by the previously estimated higher order co-
efficients [1, Section III]. However, the PD-based approach
suffers from several drawbacks such as increased signal-to-
noise-ratio (SNR) threshold, spurious cross-terms in case of
multicomponent PPSs (mc-PPS), which can cover the desir-
able spectral components, and the propagation of estimation
error from higher to lower order PPS coefficients [6].

The influence of noise and cross-terms is mitigated in the
product high-order ambiguity function (PHAF) [4]. However,
due to exponential rise of the number of cross-terms in the
PD [6], the PHAF is suitable for lower order PPSs. From
the standpoint of reducing the number of cross-terms, it is
fundamental to reduce the number of PDs. In addition, each
PD increases the SNR threshold by approximately 6 dB [3].
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The transform that exploits this fact is the cubic phase func-
tion (CPF) proposed in [5] for the estimation of third-order
PPSs (cubic phase signals). The CPF is further generalized to
higher order PPSs in [6], and this approach is known as the
hybrid CPF-HAF.

In [8, 9], an efficient method for high order PPS estima-
tion, based on the short-time Fourier transform (STFT), has
been proposed. It is referred to as the quasi-maximum like-
lihood (QML) method. In order to avoid the use of PD as
the main source of inaccuracy in methods that use the PD, the
QML method estimates the PPS coefficients from the instan-
taneous frequency (IF) of the PPS, which is extracted from the
STFT. However, since the STFT is a biased estimator, refine-
ment strategy proposed in [10] is used to achieve the Cramér-
Rao lower bound (CRLB) for the SNR above the threshold.
The QML method has significantly lower SNR threshold than
the PD-based approaches. In this paper, we extend the QML
method to deal with mc-PPSs. To that end, components have
been (a) separated in the time-frequency (TF) plane, (b) esti-
mated coarsely from the corresponding IFs and (c) refined by
the mc-PPS refinement strategy proposed in [7].

The paper is organized as follows. The signal model and
the QML method are described in Section 2. The proposed
estimator is introduced in Section 3. Simulation results are
presented in Section 4, whereas conclusions are drawn in Sec-
tion 5.

2. SIGNAL MODEL AND QML METHOD

2.1. Signal model

The mc-PPS can be described by the following model:

s(n) =

M∑
m=1

sm(n)

=

M∑
m=1

Amej
∑P

p=0 am,p
(n∆)p

p , |n| ≤ N/2,

(1)

where Am and am,p, p = 0, ..., P are the amplitude and phase
coefficients of the m-th component, respectively, M is the
number of components, N + 1 is the number of samples, and
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∆ is the sampling interval. Without loss of generality, we
assume that N is even. Our aim is to estimate parameters of
s(n) from noisy observations

x(n) = s(n) + ν(n),

where ν(n) is zero-mean white complex Gaussian noise with
variance σ2.

2.2. QML method

The QML method [9] has been proposed for the parameter
estimation of monocomponent PPSs (M = 1). This method
estimates the vector of parameters a = [a1,1, ..., a1,P ]

T , and
can be described by the following steps:

Step 1. Evaluate the STFT for various window lengths h, h ∈
H

STFTh(n, ω) =
∑
k

x(n+ k)wh(k)e
−jωk∆,

where wh(k) is window function such that wh(k) ̸= 0
for |k| ≤ h/2 and wh(k) = 0 elsewhere.

Step 2. Estimate the IF of s(n) from each STFTh(n, ω) cal-
culated in Step 1:

ω̂h(n) = argmax
ω

|STFTh(n, ω)|

n ∈ [−N/2 + h/2, · · · , N/2− h/2] , h ∈ H.
(2)

Step 3. Perform polynomial fitting to estimate phase parame-
ters âh =

[
âh1,1, ..., â

h
1,P

]T , h ∈ H , from the estimated
IFs:

âh = (XT
hXh)

−1XT
hyh, (3)

where

Xh=


1 −Nh∆ · · · [−Nh∆]

P−1

1 (−Nh + 1)∆ · · · [(−Nh + 1)∆]
P−1

· · · · · · · · · · · ·
1 (Nh − 1)∆ · · · [(Nh − 1)∆]

P−1

1 Nh∆ · · · [Nh∆]
P−1



yh = [ω̂h(−Nh), ω̂h(−Nh + 1), · · · , ω̂h(Nh)]
T
,

Nh =
N − h

2
.

Step 4. Refine estimates âh using the approach proposed in

[10] to obtain ârh =
[
âr,h1,1, ..., â

r,h
1,P

]T
, h ∈ H . This

step is necessary since the STFT is biased IF estimator.

Step 5. The final estimate is a vector âfh = [â1,1, ..., â1,P ]
T

that satisfies

âfh = argmax
âr
h

|ML(ârh)| , (4)

ML(ârh) =

∣∣∣∣∣∑
n

x(n)e−j
∑P

p=1 âr,h
1,p

(n∆)p

p

∣∣∣∣∣ . (5)

The key step in this algorithm is Step 5, where the optimal
window length in the STFT calculation is chosen. The opti-
mality criterion is maximization of the ML function ML(ârh).
In this way, instead of direct search over all parameters in the
ML function, which is computationally exhaustive for higher
order PPSs, the ML function is calculated for estimates pro-
vided by the STFT.

3. QML FOR MC-PPS

The QML proposed in [8] cannot be directly used for the mc-
PPS estimation (M > 1). In order to extend the QML method
to deal with mc-PPSs, steps described in Section 2.2 should be
modified. For example, the STFT now contains several com-
ponents which should be separated in the TF plane. Further,
the refinement strategy proposed in [10] should be modified
to take into account the existence of several components. Fi-
nally, the ML function ML(ârh) cannot be used as defined by
(5) in Section 2.2.

In the sequel, we propose an extension of the QML algo-
rithm for mc-PPSs which can be summarized by the following
steps:

Step 1. For each h, h ∈ H , calculate the STFT of x(n) as

STFTh(n, ω) =
∑
k

x(n+ k)wh(k)e
−jωk∆.

Step 2. For each h, separate signal components sm(n), m =
1, · · · ,M , i.e., estimate the corresponding IFs [11]

ω̂m,h(n) = argmax
ω

|STFTm
h (n, ω)|, (6)

where STFTm
h (n, ω) is the STFT region occupied by

the m-th component for window length h.

Step 3. For each m, m = 1, · · · ,M , perform polyno-
mial fitting to estimate phase parameters âm,h =[
âhm,1, ..., â

h
m,P

]T , h ∈ H , from the corresponding
estimated IFs, using relation (3).

Step 4. Refine estimates âm,h using the approach proposed

in [7] to obtain ârm,h =
[
âr,hm,1, ..., â

r,h
m,P

]T
, h ∈ H .

Step 5. The final estimate sets âfm,h, m = 1, · · · ,M are ob-
tained for window length h that satisfies [12, eq. (35)]

hopt = argmin
h

{
−x†Fh

(
F†

hFh

)−1

F†
hx

}
, (7)
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Fig. 1. MSE of the highest two phase coefficients of two signal components obtained by the proposed algorithm and the PCPF-HAF. Left
column: MSE of a1,4 and a1,3. Right column: MSE of a2,4 and a2,3.

where

x = [x(−N/2), · · · , x(N/2)]
T
,

Fh =
G1(−N

2 ) G2(−N
2 ) · · · GM (−N

2 )
G1(−N

2 + 1) G2(−N
2 + 1) · · · GM (−N

2 + 1)

· · · · · ·
. . .

...
G1(

N
2 ) G2(

N
2 ) · · · GM (N2 )


Gm(n) = ej

∑P
p=1 am,p(n∆)p/p,

and † represents the Hermitian operator.

Although the STFT has been used to separate signal com-
ponents in the TF plane, i.e., to provide their coarse IF estima-
tion, some other TF tool can also be used. A good candidate
for this purpose could be the S-method [13], which provides
both good concentration of components in the TF plane and
suppression of cross-terms.

The proposed method assumes that the polynomial order
P is known in advance. However, the method can be readily
extended to deal with unknown order, as well as with signals
with non-polynomial phase laws, as considered in [9].

4. SIMULATIONS

In this section, we evaluate the proposed mc-PPS estimation
method on the sum of two fourth-order PPSs (M = 2 and
P = 4 in (1)) embedded in Gaussian noise. The parameters of
the first PPS component are A1 = 1, a1,0 = 0, a1,1 = −58π,
a1,2 = 30π, a1,3 = 24π and a1,4 = −28π, whereas of the
second component are A2 = 0.7, a2,0 = 0, a2,1 = 54π,
a2,2 = −22π, a2,3 = 24π and a2,4 = 26π. Also, N = 256
and ∆ = 2/N .

In the QML method, the STFT is calculated using the
Hann window with lengths from set H={8, 12, · · · , 124, 128}.

The proposed QML method is compared to the product
version of the CPF-HAF (PCPF-HAF) [6], known to outper-
form the PHAF in terms of accuracy and the SNR threshold.
The PCPF-HAF is calculated following the guidelines given
in [6].

Performance has been evaluated through the mean squared
error (MSE) defined as

MSE = 10 log10

[
1

NMC

NMC∑
k=1

(
atrue − akest

)2]
,

where atrue represents the true coefficient value, akest the es-
timated value in the k-th simulation, and NMC is the number
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of Monte-Carlo simulations. Here, NMC = 200. The MSE
of the highest two coefficients of both components is shown
in Fig. 1, along with the corresponding CRLBs, where the
SNR is varied from −5 to 15 dB with increment of 1 dB.

Figure 1 clearly shows that the QML mc-PPS estimation
method is characterized by both lower SNR threshold and
lower MSE compared to the PCPF-HAF. Also, above the
SNR threshold, the QML approach attains the CRLB, which
is not the case with the PCPF-HAF.

The PHAF-based results have not been included in Fig. 1
since the PHAF fails to estimate PPS coefficients in the con-
sidered SNR range due to large number of cross-terms caused
by the PD operation [6].

5. CONCLUSIONS

Parameter estimation of mc-PPSs is considered. The core of
the proposed estimator can be summarized by three steps: (a)
use the STFT to provide non-parametric IF estimates of each
component, (b) perform polynomial fitting on non-parametric
IF estimates to obtain PPS coefficients, and (c) refine the ob-
tained coefficients. These three steps are repeated for all con-
sidered window lengths in the STFT and the optimal window
length (i.e., optimal PPS coefficients) is chosen to optimize
the QML cost function.

Simulation results prove the validity of the method, show-
ing that it outperforms the PCPF-HAF in terms of both the
MSE and the SNR threshold. Finally, the method attains the
CRLB for the considered signal.
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