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ABSTRACT
Partial observation of stochastic processes can occur for

various reasons, ranging from faulty sensors to occultation
issues. In this paper, we consider the problem of estimat-
ing the angular velocity of a rotating system from partial
observation corrupted by noise. The system is assumed to
evolve on the rotation group SO(n), and only k noisy
measurements with k < n are available. We propose an
optimal filter to track the angular velocity.

We show that, under some conditions, it is possible to
recover the angular velocity of the rotating system and we
propose a solution based on a Monte-Carlo method (particle
filter). In particular, we show that if the angular velocity is
stepwise constant, our algorithm succeed in estimating it.
Simulations illustrate the proposed approach.

Index Terms— Stochastic process, Stiefel manifold, Ro-
tation group, angular velocity estimation, Partial observation,
Particle filtering.

I. INTRODUCTION
Being able to estimate the angular velocity of a spacecraft

is an important issue in control theory [1]. In standard
cases, the angular velocity is estimated from observing the
orientation of the spacecraft. The orientation can then be
modeled as a process on SO(3), the set of 3 × 3 rotation
matrices. More generally, we consider here the case where
the process evolves on the set of n × n matrices, i.e. the
special orthogonal group SO(n). Such processes also appear
in problems linked with computer vision for example [2], [3].
In practice, the sensors used to determine the orientation can
be faulty or only partial observation may be available. We
consider in this article the case of partial observation from a
rotation process, given by the k first columns of the matrix
process. In this case, the observation can be modeled as a
process on the Stiefel manifold Vn,k.

For a process on Vn,k, the additive noise model used in [4]
or [5] does not hold anymore as the noise is multiplicative.
That is noticeable that as opposed to [6], we do not consider
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the problem of estimating a process evolving on Vn,k from
a noisy n×k observation matrix. In our case, the noise acts
as a control noise on the observation.

This article first presents the geometry of the Stiefel man-
ifold Vn,k, based on the geometry of the special orthogonal
group SO(n). Then, the observation process is modeled by
a stochastic differential equation on Vn,k. A Monte-Carlo
solution is then presented and implemented in Section IV
and Section V. A discussion concerning the limitations of
the presented algorithm can be found in Section V.

II. GEOMETRY OF STIEFEL MANIFOLDS

In this section, we give a rapid introduction to some
differential geometry concepts that will prove to be useful in
the following sections. For a more detailed review on Stiefel
manifolds, see for example [7][8]. The Stiefel manifold Vn,k
is the set of matrices P of dimension n× k for k ≤ n such
that

PTP = Ik.

In the case k = 1, Vn,k is the unit sphere in Rn, denoted
Sn−1. In the case where k = n, Vn,k is the group of
orthogonal matrices, i.e. O(n). For simplicity, we restrict
ourself to the case k ≤ n− 1. Recall that SO(n) is the set
of orthogonal matrices with positive unit determinant (also
called the rotation group). Let Π be the projection from
SO(n) into Vn,k defined as the operation that consists in
truncating the n− k last columns of a rotation matrix

Π(R) = P with P ∈ Vn,k, R ∈ SO(n).

In the next sections, the observed process is considered as
the image of a rotation process via the projection Π.

The projection is clearly surjective, i.e Π (SO(n)) = Vn,k
but is not injective (except for k = n− 1), i.e for a element
P ∈ Vn,k, we can find different matrices R1, R2 ∈ SO(n)
such that Π(R1) = Π(R2) = P . It is noticeable that Π is left
invariant: for any R1, R2 ∈ SO(n), Π(R1R2) = R1Π(R2).
Given a (matrix) element P of Vn,k, the space tangent to Vn,k
at P , denoted TPVn,k can be described as the projection
of the space tangent to SO(n) at R ∈ SO(n) such that
Π(R) = P as TPVn,k = dΠR (TRSO(n)), with dΠR the
differential of Π at the point R.
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One can show that TPVn,k can also be written

TPVn,k = {σP |σ ∈ so(n)}

where so(n) is the set of n × n skew symmetric matrices,
and also remarkable for being the Lie algebra associated to
the Lie group SO(n). This naturally leads to the definition
of the map χ : so(n)× Vn,k → TVn,k as

χ(σ, P ) = σP.

For a matrix R such that Π(R) = P , let VR be VR =
ker(dΠR) where ker denotes the kernel. In other words,

VR = {σ|dΠR(σ) = 0}.

The space VR is called vertical space. Its orthogonal com-
plement in TRSO(n) is denoted HR and is called horizontal
space. We can show that TPVn,k and HR are isomorphic.
It signifies that for each vector tangent to Vn,k at P , we
can associate a unique vector tangent to R in the horizontal
subspace. The image of v ∈ TPVn,k via this isomorphism is
denoted vH ∈ TRSO(n). At the end, only the components
of the angular velocity in the horizontal space will act on P
and will be estimated, as the vertical space does not act on
P (it is the kernel of dΠR).

Denoting χ−1 the application

χ−1(v, P ) = vHRT , with Π(R) = P, (1)

we can show that χ−1 is well defined, i.e χ−1 does not
depend on the choice of R (as Π is non-injective, P has
several antecedents). This is due to the fact that HR, by
definition, depends on the choice of R. Obviously, the
horizontal space considered in (1) should be associated
with the same R that is used in (1). An illustration of the
horizontal and vertical spaces are presented in Figure 1.
This application will be used to construct a rotation process
in SO(n) based on a process in Vn,k for completing the
filtering.

This leads to the definition of an inner product (and the
associated norm) in TPVn,k as

< v1, v2 > =< vH1 , v
H
2 >so(n)

=
1

2
trace

(
(vH1 )T vH2

)
.

This notion will be used in the determination of the
likelihood in the filtering section.

III. MODEL OF OBSERVATION
Rotation processes are involved in several engineering

applications such as mechanics [1] or computer vision for
example [2], [3]. If the system modeled by a rotation matrix
is evolving with time, determining the angular velocity of
this rotation process can be useful to determine the dynamics
of the system.

Fig. 1. Illustration of the different notions introduced to
describe the Stiefel manifold Vn,k as the image from the
projection Π of SO(n). The horizontal HR and vertical
VR spaces are dependent on the chosen pre-image but the
translation into so(n) via χ−1 is invariant with respect to
the choice of the preimage.

In the absence of noise, by completely observing the
rotation process, the angular velocity can be determined [9].
In this article, we consider the case of a partial observation.
This observation model can be used when observation sen-
sors are faulty for example. The rotation process is denoted
Rt ∈ SO(n), where t represents time and we consider that
only the first k columns are observable. The observation
process is denoted Pt ∈ Vn,k. By definition, Pt = Π(Rt).
For a constant angular velocity x ∈ so(n) and in the absence
of noise, Pt is solution of the differential equation

dPt = (xdt)Pt.

Given an initial condition P0, we have Pt = exp(xt)P0,
with exp the exponential map exp : so(n) → SO(n).
It is noticeable that knowing the value of x, the value
of Pt can then be directly computed. Now, we consider
that the observation is corrupted by noise. Despite that
the observation is still an element of the Stiefel manifold,
we consider a noise model acting like a noisy command.
For a non-constant angular velocity xt, the term xdt in
the previous equation is replaced by xtdt + ◦dwt, where
wt ∈ so(n) is a white noise with a variance σ2. Pt is then
solution of the stochastic differential equation

dPt = (xtdt+ ◦dwt)Pt, (2)

where ◦ denotes the Stratonovich integral. For the rest of
the article, xt is considered as a Markov process, with a
kernel function qδt( . , xt) for any time interval δt at a
time t. It is also assumed that xt is a random variable with
finite variance. In the next section, the filtering problem
is considered and treated based on the application χ−1

previously introduced.

IV. FILTERING
The problem considered in this article is the estimation

of x from the observation of Pt defined in Equation (2).
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Because of the noise, the actual value cannot be retrieved
and we are looking at πt, the distribution of x given the
observation until time t, i.e given Pt = {Ps, s ≤ t}. From
πt, an estimation based on the first moment of πt can easily
be extracted.

Due to the model used in Equation (2), usual solution
like a Kalman filter cannot be used directly. Indeed, these
solutions rely on the independence of the increment (condi-
tioned by x) of the observed process. With an observation
in Vn,k, this is not the case anymore as the noise is
multiplicative. The solution presented in this article is based
on the construction of a process pt similar to Pt in terms
of information but satisfying an additive noise model. Then,
classic solutions can be applied, using pt instead of Pt as
an observation process.

Let pt ∈ so(n) be the solution of the differential equation

dpt = χ−1(◦dPt, Pt) (3)

The process pt is called the antidevelopment of Pt. First
of all, we show that this process is indeed similar to Pt in
terms of information, or in other words, that this process is
one-to-one defined with respect to Pt. As pt is constructed
from Pt, it is enough to show that Pt can be constructed
back from its antidevelopment pt. This is the case as Pt is
solution, by definition of χ and χ−1 of

dPt = χ
(
χ−1(◦dPt, Pt), Pt

)
Replacing χ−1(◦dPt, Pt) by ◦dpt gives

dPt = χ(◦dpt, Pt).

Therefore, Pt can be constructed back from pt.
Second, we need to show that pt is a process associated

to an additive noise model. Replacing the term ◦dPt in (3)
by its expression from (2) gives

dpt = χ−1(χ(xt, Pt), Pt)dt+ χ−1(χ(◦dwt, Pt), Pt).

Now, using notations Ht = χ(xt, Pt) and dβt =
χ−1(χ(◦dwt, Pt), Pt), the last equation reads

dpt = χ−1(Ht, Pt) + ◦dβt.

It can be shown [9] that βt is a Brownian motion in so(n).
In this case, we can show [4] that the expression of πt

can be obtained in the following form, for an arbitrary test
function φ

πt(φ) =
ρt(φ)

ρt(1)
(4)

where πt(φ) = E[φ(xt)|Pt] and ρt(φ) =
E[φ(x′t)Lt(x

′, P )|Pt]. The function ρt is a non-normalized
version of πt. In practice, φ is usually chosen as φ(x) = xt
in order to get the first moment of πt, which is the optimal
estimator for xt with respect to the mean square error. The

process x′t is a copy, in term of distribution, of the process
xt but independent from Pt. The likelihood Lt is defined as

Lt(x
′, P ) = exp

(
1

σ2

∫ t

0

< H ′s, dPs > −
1

2σ2

∫ t

0

||H ′s||2ds
)

(5)
with H ′t = χ(x′s, Ps).

Despite that the solution presented in (4) gives an expres-
sion of πt, the conditional distribution of xt, we are looking
for an adaptive solution to complete real-time filtering.

V. NUMERICAL IMPLEMENTATION
In this section, we present a Monte-Carlo method to gen-

erate an adaptive solution. From Equation (4), it is enough
to find an expression of ρt(φ), the conditional distribution
can then be easily determined.

The expectation in the definition of ρt is approximated by
an empirical average ρNt

ρNt (φ) =
1

N

∑
i≤N

φ(Xi
t)Lt(X

i, P ),

where the processes Xi are independent copies of x (same
distribution), independent from the observation Pt. These
processes are called particles [10] and will be used as
candidates to the actual value of xt. To determine Lt(Xi, P ),
the whole process Pt is needed.

However, in practice, only discrete samples are available.
By calling δt the sampling time and n = dtδte, the
unnormalized distribution ρt is then approximated by

ρNn (φ) =
1

N

∑
i≤N

φ(Xi
n)Ln(Xi, P )

where Ln is the discrete version of Lt, the integrals being
replaced by Riemannian sums

Ln(Xi, P ) = exp

 1

σ2

∑
k≤n

< Hi
k, δPk > −

1

2σ2

∑
k≤n

||Hi
k||2δt

 .

It is noticeable that the likelihood can be written into a
recursive form

Ln(Xi, P ) = Ln−1(Xi, P )ln(Xi
n, Pn)

with ln(Xi
n, Pn) = exp

(
1
σ2 < Hi

n, δPn > − 1
2σ2 ||Hi

n||2δt
)
.

After normalizing ρNn , we get an approximate distribution
of πt. This leads to Algorithm 1 to estimate πt as a weighted
sum of particles.

The normalization step (Step 3) is not only here to
compute πNn instead of ρNn but also to numerically stabilize
the computation of the weights.

Step 4 is called resampling. It is here to prevent a
degeneracy due to the finite number of particles.

The resampling step consists in killing the particles far
away from xt (in fact, killing the particles with low weights)
and cloning the remaining ones. To measure if the particles
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Algorithm 1 Particle filter algorithm
• For the initialization, generate particles from a priori
p0: Xi

0 ∼ p0 and set wi0 = 1/N .
• At a time n > 0:

1) Propagate the particles Xi
n ∼ qδt( . , Xi

n−1)
2) Update the weight win of each particle as:

win = win−1ln(Xi
n, Pn).

3) Normalize the weights: win = win/
∑
j w

j
n

4) If
(∑

i(w
i
n)2
)−1

< N/2, generates

[m1 ... mN ] ∼ multinomial(w1 ... wN )

such that
∑
im

i = N . Then, clones Xi
n m

i-times
and set win = 1

N .
5) Estimate πt(φ) as πNn (φ) =

∑
i φ(Xi

n)win

are scattered away from xt, one commonly used criterion
is a threshold based on the Effective Sample Size (ESSw)
defined as

ESSw =

(∑
i

(win)2

)−1
.

Results from a simulation of this algorithm are presented
in Figure 2. For this simulation, the chosen Stiefel manifold
was the sphere V3,1 = S2. The process xt ∈ so(3) is a stair
function. The variance of the noise is fixed to σ2 = 1.

To approximate xt, N = 500 particles are generated from
a normal prior distribution p0 centered around the origin
with a variance 2. Using more particles does not significantly
improve the results. Considering a bad prior for generating
the particles is not a big issue as the resampling step quickly
eliminates the wrong candidates for the estimation. The time
step for the observation is δt = 10−2.

Figure 2 illustrates the results obtained for the estimation
when the state xt is a stair function. As xt is constant, the
algorithm is able to estimate properly xt. Even if this has
not been implemented for the simulation in Figure 2, one
could use a classical algorithm to detect abrupt changes in
xt in order to estimate the time where the particles should
be sampled [11]. When a change is detected, the particles
are sampled from the initial priori again to converge towards
the new value. In our simulation, the particles were simply
sampled again from p0 at the time of variation of xt.

In the case of a constant angular velocity, the particles will
not drift away because they are at a constant position (as they
propagate with the same model as xt). They only merge
together when they are resampled (Step 4 in Algorithm
1), letting less and less different candidates for xt. As the
vertical component of xt has no effect on Pt (by definition
of the vertical space), the vertical part can not be estimated
at a given time, only the horizontal components can be
estimated. As Pt will evolve on Vn,k, the vertical space will

Fig. 2. Evolution of the estimation (red) of each component
of xt (black), namely x1, x2 and x3. The process xt is
here chosen as a stair function. As the present algorithm
can estimate a constant state, it is also able to estimate a
stair function, by resampling properly the particles when xt
varies abruptly (detected by general decreasing likelihood
for example).

change too and the component on the initial vertical space
can be estimated. In the end, it will be possible to completely
estimate the angular velocity.

However, in the case when xt is a diffusion for example,
if the variance of xt is too high or the sampling rate too
low, the particles will not have the time to converge and
make a proper estimation. Indeed, contrary to the previous
case, the vertical component is not constant (as xt is not
constant) and during the time that Pt evolves on Vn,k, the
vertical component will be different, making its estimation
impossible.

VI. CONCLUSION
In this article, we have presented a model of process on

the Stiefel manifold Vn,k to represent partial observations of
a rotation process on SO(n). The problem of estimating
the angular velocity from partial noisy observations was
considered. Contrary to the case usually presented in lit-
erature, our noise model is multiplicative. This specificity,
together with partial observations, prevents us from using
traditional resolution methods. A time-continuous solution
has been presented and a Monte-Carlo implementation pro-
posed, based on a particle filter. We showed that the angular
velocity can be estimated in the case of a stair function model
and that only a partial estimation can be obtained for more
complicated cases. Further direction for this work consists in
validation of the proposed method on experimental datasets.
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