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ABSTRACT

A strategy for active target detection suitable for the use of mobile
agents in a field is presented. In particular, there is an interest in
autonomous underwater vehicles. By exploiting notions from group
testing, the proposed algorithm decides when to collect new samples
depending on whether the mobile agent perceives the sensor mea-
surements correspond to noise or a target pattern. Under suitable
assumptions about the field emanated by the target, i.e. the target
signature is locally low rank in the field, one can efficiently sample
the field to locate the target using O(m logm logn) samples on an
n× n grid where m� n is a parameter specifying the group size.

Index Terms— Target Detection, Matrix Completion, Adaptive
Group Testing

1. INTRODUCTION

Target detection in a field, is a long-standing problem of interest in a
variety of applications from environmental to military. In this paper,
we consider a framework in which a single vehicle, an autonomous
underwater vehicle (AUV), physically samples a field to determine
the location of the target. For underwater applications such as chem-
ical plume detection and tracking or mine detection, the challenge
of detection is further exacerbated by the severe limitations of re-
sources such as power, sensing capabilities and the density of sensors
available – the ocean is vast. Thus, the trade-offs between robust-
ness, efficiency and energy consumption is of significant interest. For
example, in tasks like mine-countermine operations, the hit rate of
the algorithm might be considered more important compared to the
energy spent. In contrast, operations that require the AUV to stay
underwater for a longer duration making efficient use of resources
for measurements or communication is important. Hence, a desirable
exploration strategy is one that can get the best of both. The problem
of searching for a target in an underwater field is akin to finding a
needle in a haystack. The target signature is often only present locally
and hard to detect without a brute force scan of the entire field. An ex-
haustive scan is often prohibitive because of the associated actuation
and communication costs. Target detection methods that consider
each sample independently such as over fixed size windows suffer
from this drawback. A better informed decision can often be taken if
the collected measurements are considered in unison and adaptively.

In this paper, we propose an adaptive sampling strategy similar
to that used for group testing. The field is progressively sampled
such that more samples are collected around the target. Our method
explicitly exploits the low rank structure of the field around a target
to decide a direction in which the AUV should move next. While
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Fig. 1. An example of a target (white circle) against the seabed in a
real sidescan sonar image from the NSWC dataset. Note the relative
size of the target in the field.

a naive application of low-rank matrix completion principles [1, 2]
would require the number of samples that grow super-linearly in the
grid dimensions (O

(
n log2 n

)
for n×n grid), we propose combining

the basic theory with a group testing approach to make the growth
logarithmic in the size of the grid (O(m logm logn) where m de-
notes size of sub-grid/group). We demonstrate the performance of
our method on actual side scan sonar images with a synthetic spread
on the target signature.

Notational Conventions: Lowercase boldface alphabets to denote
column vectors (e.g. z) and uppercase boldface alphabets to denote
matrices (e.g. A). Special sets are denoted by uppercase blackboard
bold font (e.g. R for real numbers). The MATLABr indexing rules
will be used to denote parts of a vector/matrix.

Active detection and classification have been previously exam-
ined. In [3], a data-adaptive approach is taken to select features and
the training data is used to design a kernel based classifier. As in
our work, the underlying target model is derived from the observa-
tions, in contrast, we do not seek to model a wide class of targets
using exemplars from the data. Additionally, we seek to solve the
exploration-exploitation problem. In principle, the model-based meth-
ods of [3] could be adapted to be incorporated in our approach.

In [4–6], the authors take a dynamic programming (DP) based
approach for deciding the optimal Bayesian sampling policy with
suboptimal strategies to mitigate computational hardness associated
with the DP approach. In contrast, we take a random sub-sampling
approach in the same spirit as matrix completion [1,2] that is very easy
to implement and has negligible computational overhead. Further, we
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do not assume knowledge of the probability distributions.
Our work shares some features with that of distilled sensing [7–9]

as far as algorithmic approaches are concerned but we have a low-rank
structure instead of a sparsity prior. In [7], the objective is to detect
the locations of non-zero elements of a sparse vector by iteratively
discarding unlikely locations. In contrast, we assume that our target’s
signature has some spatial structure relative to the background clutter
or noise. We do not throw away measurements, but rather focus
our attention on spatial locations where we should take additional
measurements. Thus, we actively determine regions to ignore and
focus our attention on the regions of interest. We take this approach
since underwater sensing is extremely expensive. Thus, versus [7–9],
we do not have the luxury of repeating measurements and the structure
we assume in our target (low rank) enables our approach.

2. PROBLEM DESCRIPTION

2.1. Assumptions

To describe our notation we assume for the time being that the target
is located at the origin and noise is absent. Let H : R2 → R denote
the scalar valued field induced by the target, i.e. the target’s signature,
and x = (xc, xr) ∈ R2 denote an arbitrary location in the search
space. Thus, a mobile agent measuring the field value at location
x ∈ R2 would record the value H(x) = H(xc, xr) ∈ R. We shall
make the following key assumptions on the field H(x):
(A1) The field is separable in some known basis of R2.
(A2) The magnitude of the field is a monotonically decreasing func-

tion of the distance from the target in any given direction.
(A3) The field is spatially invariant relative to the target’s position.
An example of (A1) is separability in the xc and xr directions (i.e. in
the canonical basis {(1, 0) , (0, 1)}). This means that there exist func-
tions F : R → R and G : R → R such that H(x) = F (xc)G(xr),
∀ (xc, xr) ∈ R2. Notice that if H(x) is instead separable in the ro-
tated directions Σ (1, 0)T and Σ (0, 1)T for some known Σ ∈ R2×2,
then we can work in this rotated coordinate system. Thus, without loss
of generality, we shall assume separability of H(x) in the canonical
basis. Assumption (A2) is intuitively clear and can be mathematically
described by the inequality:

|H(t1x)| > |H(t2x)| , ∀x ∈ R2, t1, t2 ∈ R, |t2| > |t1| . (1)

Assumption (A3) implies that if we keep the origin fixed, and the
target were moved to x0 ∈ R2, then the new field at location x would
be given by H(x− x0). This assumption ensures that (A1) holds
in the canonical basis, regardless of the target’s position x0. In this
sense (A3) is stricter than necessary for our purposes, but we retain it
for intuitive clarity.

Scalar fields can correspond to intensity measurements or a trans-
formation of the true field. The following types of commonly assumed
intensity fields satisfy our assumptions (A1) and (A2):

1. Gaussian fields: H(x) = H0 exp
(
−‖Dx‖22

)
for any 2× 2

diagonal matrix D and some constant H0 > 0.
2. Laplacian fields: H(x) = H0 exp

(
−‖Dx‖1

)
for any 2× 2

diagonal matrix D and some constant H0 > 0.
3. Power Law fields: H(x) = H0 |xc|−p1 |xr|−p2 for constants
H0, p1, p2 > 0.

4. Any multiplicative combination of fields satisfying (A1)
and (A2), e.g.

H(x) = H0 |xc|−1 |xr|−2 exp
(
−c1x2c

)
exp(−c2 |xr|)

for constants H0, c1, c2 > 0.

2.2. Formulation

In light of our notation and assumptions in the previous section, we
can state the active target detection problem as the following task: To
determine the location of the peak in the field H(x) from its values in
only a few locations x ∈ R, without incurring a heavy computational
cost. Both assumptions (A1) and (A2) contribute towards reducing
the number of samples required for active target detection, albeit in
different ways. This is apparent from our algorithm in Section 3.1.
By virtue of assumption (A2), detecting the target is synonymous
with locating the peak of the induced field. This property reduces the
required computational effort as shown in Section 3.3.

Before presenting the sampling and reconstruction strategies
in Section 3, we demonstrate how (A1) implies a low-rank structure
on the field. We’ll use the lifting technique from optimization [10].
Suppose that H(x) = F (xc)G(xr). The discretized version of the
field, sampled on a regular n× n grid, can be arranged in the form of
a rank one matrix H , whose (i, j)th entry H(i, j) is given by

H(i, j) = H
(
xic, x

j
r

)
= F

(
xic

)
G
(
xjr

)
. (2)

where
(
xic, x

j
r
)

is the physical location of the (i, j)th point. The
matrix H is clearly of rank one since we can express it as the outer
product H = fgT where

f =
[
F
(
x1c
)
, F
(
x2c
)
, . . . , F (xnc )

]T

g =
[
G
(
x1r
)
, G
(
x2r
)
, . . . , G(xnr )

]T
(3)

Without loss of generality, we assume that both x1r , x2r , . . . , xnr and
x1c , x

2
c , . . . , x

n
c are increasing sequences, corresponding respectively

to traversing the grid from top to bottom and from left to right.

3. SAMPLING AND RECONSTRUCTION STRATEGY

To illustrate the basic idea, we shall initially assume that H(·) is
a positive scalar field and that all sources of noise are absent. In
Section 3.4, we mention modifications to the algorithm in the presence
of noise. Note that although we assume a regular square n×n grid to
illustrate our algorithm, the same arguments apply, almost verbatim,
to rectangular grids as well.

3.1. Algorithm Description

Let the first round of sampling be on the Cartesian product of the
index sets Tc, Tr ⊆ {1, 2, . . . , n} such that |Tc| = |Tr| = m for
some m ∈ Z+ with m � n. Without loss of generality, assume
that the indices in Tc, denoted by Tc(1) , Tc(2) , . . . , Tc(|Tc|), are in
increasing order and for notational convenience we shall let Tc(0) = 1
and Tc(|Tc|+ 1) = n to denote the boundary indices of the actual
n× n grid. We collect O

(
m log2m

)
random measurements on the

sub-matrix H(Tr, Tc) and use the optimal solution to the tractable
convex heuristic

minimize
X

‖X‖∗
subject to P(X) = P(H(Tr, Tc))

(P1)

as our reconstruction Ĥ(Tr, Tc). In (P1), ‖X‖∗ is the sum of the sin-
gular values of X (nuclear norm), and P denotes the projection oper-
ator on the sampled indices. Let u and v denote respectively, the left
and right singular vectors corresponding to the largest singular value
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of Ĥ(Tr, Tc), with ‖u‖2 = ‖v‖2 = 1. Let the largest magnitude ele-
ment of u be at the index j0 ∈ {1, 2, . . . , |Tc|}, and that of v be at in-
dex i0 ∈ {1, 2, . . . , |Tr|}. The next round of sampling is on the Carte-
sian product of the index sets T ′c ⊆ {Tc (j0 − 1) , . . . , Tc (j0 + 1)},
and T ′r ⊆ {Tr (i0 − 1) , . . . , Tr (i0 + 1)}, with |T ′c | = |T ′r | = m′

for some m′ ∈ Z+ with m′ � n.

3.2. Proof of Correctness

Matrix completion [1, 2] implies that O
(
m log2m

)
random mea-

surements are sufficient to exactly reconstruct the unit rank matrix
H(Tr, Tc) with high probability by solving the convex heuristic (P1).
Thus, in the absence of noise, we have Ĥ(Tr, Tc) = H(Tr, Tc) =
σuvT as the singular value representation with ‖u‖2 = ‖v‖2 = 1.
This expression is necessarily unique in the triplet (σ,u,v) up to a
global sign flip for the pair (u,v). By the positivity assumption on
the field H(·), the matrix H(Tr, Tc) is element-wise positive imply-
ing that element-wise positivity of the singular vectors u and v can
be ensured (after making a global sign flip if necessary).

If the true location of the target is between the horizontal spatial
coordinates xTc(j)

c and xTc(j+1)
c , then u(1 : j) would be a monotoni-

cally increasing sequence and u(j + 1 : |Tc|) would be a monoton-
ically decreasing sequence. In case the target is located to the left
of xTc(1)

c (respectively right of xTc(|Tc|)
c ) then the entire sequence

u(1 : |Tc|) would be monotonically decreasing (respectively mono-
tonically increasing). Thus, the index j0 ∈ {1, 2, . . . , |Tc|} at which
u attains a maximum gives the estimate xTc(j0)

c of the horizontal
location of the target. Furthermore, if u(j0) is a strict local max-
imum, i.e. u(j0) > u(j0 + 1) and u(j0) > u(j0 − 1) then the
target is definitely located between the horizontal positions xTc(j0−1)

c

and xTc(j0+1)
c (due to the spatial monotonicity assumptions on the

field H(·)). In case, u(j0) is not a strict local maximum and one
has u(j0) = u(j0 + 1) (respectively u(j0) = u(j0 − 1)) then the
target is definitely located between horizontal positions xTc(j0)

c and
x
Tc(j0+1)
c (respectively xTc(j0−1)

c and xTc(j0)
c ). In either scenario,

the target is between xTc(j0−1)
c and xTc(j0+1)

c and only the space
between these two horizontal coordinates needs to be explored in
the next round of sampling. The preceding argument applies almost
verbatim in the vertical spatial direction, i.e. to the index set Tr. The
target is located between xTr(i0−1)

r and xTr(i0+1)
r and the algorithm

explores it in the next round of sampling. After a few rounds of
sampling we are able to zero in on the location of the target.

3.3. Key Trade-offs

For a quantitative comparison of the trade-offs involved, we present
the following analysis. Suppose that in each round of sampling, we
collect O

(
m log2m

)
random samples on an m×m sub-matrix of

H(:, :). If we pick the sub-matrix using m uniformly spaced rows
and columns of H , then using the algorithm described above, we
reduce the grid size to be searched in the next round of sampling to
4n2/m2. If NR denotes the number of rounds of sampling (stopping
time) needed to zero in on the target then we have,

NR ≤
logn2

logm2 − log 4
=

logn

logm− log 2
≈ logn

logm
(4)

Let the total number of samples collected be NS. Since we are
collectingO

(
m log2m

)
samples in each round of sampling, we have

NS = NR ·O
(
m log2m

)
= O(m logm logn) (5)

Let us denote the runtime of the algorithm by NT. To compute this,
we denote the run time of the m ×m matrix completion problem
from O

(
m log2m

)
random samples, by R(m). It is well known

that the maximum of an m length sequence can be computed in
m − 1 < m comparisons. Since each round of sampling involves
one matrix completion problem and one problem of determining a
sequence maximum, we have

NT ≤ NR · (R(m) +m) ≈ NR ·R(m) = R(m)
logn

logm
(6)

where the approximation of the iteration cost toR(m) is valid because
matrix completion algorithms are known to scale super-linearly in
dimension (if using general purpose Semidefinite Program Solvers
like SeDuMi with CVX [11, 12] then R(m) = O

(
m6
)
). If we tried

to reconstruct the entire field matrix H(:, :) instead we would have
needed O

(
n log2 n

)
� NS number of samples and R(n) � NT

computation time. Thus, reconstructing the entire field turns out to
be much worse from both sampling and computational viewpoints.

3.4. Handling Noise

When measurement and/or background noise is present we make the
following modifications to our basic algorithm. Instead of (P1), we
now use the optimal solution to a different convex heuristic

minimize
X

‖X‖∗
subject to ‖P(X)−P(H(Tr, Tc))‖F ≤ ε

(P2)

as our reconstruction Ĥ(Tr, Tc). Problem (P2) is the stable matrix
completion formulation [13].

The choice of m becomes important in the presence of noise.
We shall numerically demonstrate the effect of m in our simulation
results.

4. SIMULATION RESULTS

4.1. Setup

We test the performance of our algorithm on synthetic images with a
single target and a background comprising random Gaussian noise.
The input parameters to the simulation are the decay profile of the
target and its spread factor(σ). We perform simulations on three target
decay profiles viz. Gaussian, Laplacian and Cauchy as shown in (7).
The true location of the target is denoted by x0, y0 and its decay
profile on the 2-D field is given as I(x, y). Random i.i.d.Gaussian
noise is then added to the intensity values at each location x, y.

I(x, y) = A0e
− (x−x0)2+(y−y0)2

σ2

I(x, y) = A0e
−

√
(x−x0)2+(y−y0)2

σ

I(x, y) =
A0σ

2

σ2 + (x− x0)2 + (y − y0)2

(7)

In each such image for a particular decay type we perform 10
monte carlo trials of our localization algorithm. The size of the sam-
pled window w is varied as an algorithm parameter. The localization
results are averaged over these 10 trials to obtain a probability of
target localization for the particular image. This is averaged over 50
different images with different target locations to obtain the average
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(a) (b) (c)

Fig. 2. Figure shows the variation in the average probability of localization within 20 pixels of target location with the size of sampled window
w and the spread factor σ.From left to right are the results for the decay types a) Laplacian b) Gaussian c) Cauchy decay profiles for the target.
A Gaussian distributed background noise profile was used for the simulation.

probability of target localization within a radius of 20 pixels target
location.

To solve the low-rank matrix completion problem (P2) we used
the implementation LMaFit [14, 15].

4.2. Discussion

In Figure 2 the spread factor σ for each decay type varies along the
y-axis. Number of samples w collected across each direction varies
along the x-axis. For this simulation, we collect the same number of
samples in both horizontal and vertical directions.

The results in Figure 2 suggest, as expected, that the accuracy
of localization increases when the number of samples collected Ns

at each iteration is increased. The same is true for the spread factor
σ except that if for a large values of σ the target signature decays
too slowly the algorithm confuses it for background noise. Thus, for
each decay type there seems to be an optimal range of spread factors
for which the algorithm is able to reliably locate the target. Overall,
the average probability of detection appears to be highest when the
target decay signature is Laplacian which decays slower compared to
Gaussian but faster than the Cauchy decay profile.

This re-iterates the fact that the algorithm performs optimally
over a range of decay rate or spread factors σ of the target. Hence,
depending on the spread of the field, the algorithm might be required
to collect a higher number of samples at each iteration.

5. CONCLUSION

In this paper, we present an active target detection strategy for local-
ising a target in the field using samples collected by a single vehicle.
We adopt a group testing like technique for adaptively collecting more
samples around the region of interest. An algorithm is presented for
fields that can be assumed to be separable locally around the target,
which allows us to exploit its low rank nature.

Simulation results on synthetically generated fields containing
targets with varying decay profiles suggest that there exists a trade-
off between the number of samples collected by the vehicle at each
iteration and the spread of the target. In the future, we would like
to additionally adaptively select the number of samples w at each
iteration depending on the local gradient.
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