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ABSTRACT

The approximation of linear time-invariant (LTI) systems by sam-
pling series is an important topic in signal processing. Recently, it
was conjectured [1] and proved [2] that, for every sampling pattern
that is a complete interpolating sequence, there exists a universal sta-
ble LTI system such that for every oversampling factor there exists a
bandlimited input signal such that the approximation process, which
is used to approximate the output signal of the LTI system, diverges.
This instability of the approximation process shows a fundamental
limit of sampling-based signals processing. However, as is shown
in this paper, by using more general measurement functionals this
divergence can be overcome.

Index Terms— bandlimited signal, linear time-invariant system,
complete interpolating sequence, sampling, measurement functional

1. INTRODUCTION

Sampling theory plays a fundamental role in modern signal and in-
formation processing, because it is the basis for today’s digital world
[3]. The reconstruction of bandlimited signals from their samples is
also essential for other applications and theoretical concepts [4, 5,
6]. For an overview of existing sampling theorems see for example
[4, 7, 8].

Although the sampling theorems are very important on their
own, they do not reflect the actual purpose of signal processing. The
core task of signal processing is to process data. This means that,
usually, the interest is not in a reconstruction of the sampled sig-
nal itself, but in some processed version of it. This might be the
derivative, the Hilbert transform or the output of any other stable
linear system T . In the general case the goal is to approximate the
desired transform Tf of a signal f by an approximation process,
which uses only finitely many, not necessarily equidistant, samples
of the signal f . Exactly as in the case of signal reconstruction, the
convergence and approximation behavior is important for practical
applications [9].

In this paper we consider bandlimited signals from the Paley–
Wiener space PW1

π , which consists of bandlimited signals with ab-
solutely integrable Fourier transform. In the case of oversampling
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(a > 1), we can use the sampling series
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where φ are suitable reconstruction functions, to reconstruct f from
its samples {f(k/a)}k∈Z. It is easy to find kernels φ such that the
series in (1) is globally uniformly convergent.

However, in the system approximation problem an additional
LTI system T is present in the reconstruction process
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and it has already been shown that there are systems T and signals
f for which the series (2) diverges [10]. For example, the Hilbert
transform is a universal system for which there exists a signal such
that the peak value of (2) diverges, regardless of the amount of over-
sampling and the kernel φ. [10].

Here, we analyze the more general, non-equidistant case. In this
setting, the sampling-based system approximation process (2) takes
the form

∞∑
k=−∞

f(tk)(Tφk)(t), (3)

where {tk}k∈Z is the sequence of sampling points and the φk, k ∈
Z, are certain reconstruction functions. An interesting question is
whether the additional degree of freedom that is introduced by non-
equidistant sampling can be used to circumvent the divergence that
was observed in the equidistant setting. In [1] it was conjectured that
this is not the case: It was conjectured that the approximation process
(3) is not always stable, i.e, that there exist systems T and signals f
such that (3) diverges even with oversampling. This conjecture was
recently proved in [2].

In this paper consider more general measurement functionals
than the pointwise sampling functionals that are used in (3). It will
turn out that there exist measurement functionals such that the sys-
tem approximation process is always stable.

2. NOTATION

Let f̂ denote the Fourier transform of a function f , where f̂ is to be
understood in the distributional sense. Lp(R), 1 ≤ p < ∞, is the
space of all to the pth power Lebesgue integrable functions on R,
with the usual norm ‖ · ‖p, and L∞(R) the space of all functions for
which the essential supremum norm ‖ · ‖∞ is finite. C[a, b] denotes
the space of all continuous functions on [a, b].

For σ > 0 and 1 ≤ p ≤ ∞ we denote by PWp
σ the

Paley-Wiener space of functions f with a representation f(z) =
1/(2π)

∫ σ
−σ g(ω) e

izω dω, z ∈ C, for some g ∈ Lp[−σ, σ]. If
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f ∈ PWp
σ then g(ω) = f̂(ω). The norm for PWp

σ , 1 ≤ p <∞, is
given by ‖f‖PWp

σ
= (1/(2π)

∫ σ
−σ|f̂(ω)|

p dω)1/p.
We briefly review some definitions and facts about stable linear

time-invariant (LTI) systems. A linear system T : PWp
π → PWp

π ,
1 ≤ p ≤ ∞, is called stable if the operator T is bounded, i.e., if
‖T‖ := sup‖f‖PWp

π
≤1‖Tf‖PWp

π
< ∞. Furthermore, it is called

time-invariant if (Tf( · − a))(t) = (Tf)(t− a) for all f ∈ PWp
π

and t, a ∈ R. For every stable LTI system T : PW1
π → PW1

π there
exists exactly one function ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) e

iωt dω, t ∈ R, (4)

for all f ∈ PW1
π . Conversely, every function ĥT ∈ L∞[−π, π]

defines a stable LTI system T : PW1
π → PW1

π . The operator norm
of a stable LTI system T is given by ‖T‖ = ‖ĥ‖L∞[−π,π]. Note that
ĥT ∈ L∞[−π, π] ⊂ L2[−π, π], and consequently hT ∈ PW2

π .

3. BASICS OF SYSTEM APPROXIMATION

In the classical non-equidistant sampling setting the goal is to re-
construct a bandlimited signal f from its non-equidistant samples
{f(tk)}k∈Z, where {tk}k∈Z is the sequence of sampling points. One
possible way to do the reconstruction is to use a sampling series

∞∑
k=−∞

f(tk)φk(t), (5)

where the φk, k ∈ Z, are certain reconstruction functions.
In this paper we consider sampling point sequences {tk}k∈Z that

are real and a complete interpolating sequence for PW2
π .

Definition 1. We say that {tk}k∈Z is a complete interpolating se-
quence for PW2

π if the interpolation problem f(tk) = ck, k ∈ Z,
has exactly one solution f ∈ PW2

π for every sequence {ck}k∈Z
satisfying

∑∞
k=−∞|ck|

2 <∞.

We further assume that the sequence of sampling points {tk}k∈Z
is ordered strictly increasingly, and, without loss of generality, we
assume that t0 = 0. Then, it follows that the product

φ(z) = z lim
N→∞

∏
|k|≤N
k 6=0

(
1− z

tk

)
(6)

converges uniformly on |z| ≤ R for all R < ∞, and φ is an entire
function of exponential type π [11]. It can be seen from (6) that
φ, which is often called generating function, has the zeros {tk}k∈Z.
Moreover, it follows that

φk(t) =
φ(t)

φ′(tk)(t− tk)
(7)

is the unique function in PW2
π that solves the interpolation problem

φk(tl) = δkl, where δkl = 1 if k = l, and δkl = 0 otherwise.

Remark 1. Equidistant sampling with tk = k, k ∈ Z, is a special
case of the more general non-equidistant setting which is considered
in this paper. For equidistant sampling we have φk(t) = sinc(t−k),
k ∈ Z, and (5) reduces to the ordinary Shannon sampling series.

Next, we discuss the system approximation process (3) that
was introduced in the introduction. For the approximation behavior
of the series (3) we have the following negative result, which was
proved in [2].

Theorem 1 ([2]). Let {tk}k∈Z ⊂ R be an ordered complete inter-
polating sequence for PW2

π , φk as defined in (7), and t ∈ R. Then
there exists a stable LTI system T∗ : PW1

π → PW1
π such that for

every 0 < σ < π there exists a signal f∗ ∈ PW1
σ such that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f∗(tk)(T∗φk)(t)

∣∣∣∣∣ =∞. (8)

Theorem 1 shows that a digital, i.e., sampling-based, implemen-
tation of stable LTI systems is not always possible for the space
PW1

π . This also illustrates the limits of a general sampling-based
technology. However, in the next section we will see that more gen-
eral measurement functionals can help create a stable approximation
process.

4. SYSTEM APPROXIMATION WITH GENERAL
MEASUREMENT FUNCTIONALS

A key concept in signal processing is to process analog, i.e.,
continuous-time signals in the digital domain. The fist step in this
procedure is to convert the continuous-time signal into a discrete-
time signal, i.e., into a sequence of numbers. Usually the point
evaluation functionals ck : f 7→ f(tk) are used to do this conver-
sion. However, it is also possible to use more general measurement
functionals [12, 13]. For example, functionals that take the average
of the signal over an interval, like in

ck : f 7→
1

2δ

∫ tk+δ

tk−δ
f(t) dt,

where δ is some sufficiently small positive number. In this section
we study the system approximation problem for the case that these
more general measurement functionals are used instead of the con-
ventional point evaluation functionals.

The approximation of Tf by the system approximation pro-
cess (3) can be seen as an approximation that uses the biorthogonal
system {e−i · tk , φ̂k}k∈Z. In this setting, the sampling functionals,
which define a certain measurement procedure, are given by

ck(f) = f(tk) =
1

2π

∫ π

−π
f̂(ω) eiωtk dω, (9)

and the functions

φk(t) =
1

2π

∫ π

−π
φ̂k(ω) e

iωt dω

serve as reconstruction functions in the approximation process (3).
In Theorem 1 we have seen that for f ∈ PW1

π even with over-
sampling an approximation of Tf using the process (3) is not possi-
ble in general, because there are signals f ∈ PW1

π and stable LTI
systems T such that (3) diverges.

Next, we will study more general measurement procedures than
(9) in hopes of circumventing the divergence that was observed in
Theorem 1. To this end, we consider a complete orthonormal system
{θ̂n}n∈N in L2[−π, π].

For f ∈ PW2
π the situation is simple. The measurement func-

tionals cn : PW2
π → C are given by

cn(f) =
1

2π

∫ π

−π
f̂(ω)θ̂n(ω) dω =

∫ ∞
−∞

f(t)θn(t) dt.
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Further, we have

lim
N→∞

1

2π

∫ π

−π

∣∣∣∣∣f̂(ω)−
N∑
n=1

cn(f)θ̂n(ω)

∣∣∣∣∣
2

dω = 0

as well as

lim
N→∞

∫ ∞
−∞

∣∣∣∣∣f(t)−
N∑
n=1

cn(f)θn(t)

∣∣∣∣∣
2

dt = 0

for all f ∈ PW2
π .

In order that

cn(f) =
1

2π

∫ π

−π
f̂(ω)θ̂n(ω) dω (10)

is also a reasonable measurement procedure for f ∈ PW1
π , we need

the functionals cn : PW1
π → C, defined by (10), to be continuous

and uniformly bounded in n. Since

sup
‖f‖PW1

π
≤1

|cn(f)| = ‖θ̂n‖L∞[−π,π],

this means we additionally have to require that the functions of the
complete orthonormal system {θ̂n}n∈N satisfy

sup
n∈N
‖θ̂n‖L∞[−π,π] <∞. (11)

Using these more general measurement functionals (10), the sys-
tem approximation process takes the form

∞∑
n=1

cn(f)(Tθn)(t). (12)

The next theorem describes the approximation behavior of (12).

Theorem 2. Let 0 < σ < π. There exists a complete orthonor-
mal system {θ̂n}n∈N in L2[−π, π] satisfying (11), an associated
sequence of measurement functionals {cn}n∈N as defined by (10),
and a constant C1 such that for all stable LTI systems T : PW1

π →
PW1

π and all f ∈ PW1
σ we have

sup
t∈R

∣∣∣∣∣
N∑
n=1

cn(f)(Tθn)(t)

∣∣∣∣∣ ≤ C1‖f‖PW1
σ
‖T‖

for all N ∈ N, and further

lim
N→∞

(
sup
t∈R

∣∣∣∣∣(Tf)(t)−
N∑
n=1

cn(f)(Tθn)(t)

∣∣∣∣∣
)

= 0.

Theorem 2 shows that, using oversampling and more general
measurement functionals, it is possible to have a stable system ap-
proximation with the process (12). It is interesting to note that Theo-
rem 2 is not only an abstract existence result. The complete orthonor-
mal system {θ̂n}n∈N which is used in Theorem 2 can be explicitly
constructed by a procedure given in [14, 15].

For the proof we need the following theorem from [14, 15].

Theorem 3 (Olevskii). Let 0 < δ < 1. There exists an orthonormal
system {ψn}n∈N of real-valued functions that is closed in C[0, 1]
such that supn∈N‖ψn‖L∞[0,1] < ∞ and such that there exists a
constant C2 such that for all x ∈ [δ, 1] and all N ∈ N we have∫ 1

0

∣∣∣∣∣
N∑
n=1

ψn(x)ψn(τ)

∣∣∣∣∣ dτ ≤ C2. (13)

Remark 2. In the above theorem, we adopted the notion of “closed”
from [16]. In [16] a system {ψn}n∈N is called closed in C[0, 1] if
every function in C[0, 1] can be uniformly approximated by finite
linear combinations of the system {ψn}n∈N, that is if for every ε >
0 and every f ∈ C[0, 1] there exists an N ∈ N and a sequence

{αn}Nn=1 ⊂ C such that
∥∥∥f −∑N

n=1 αnψn

∥∥∥
L∞[0,1]

< ε.

The inequality (13) in Theorem 3 plays a central role in the proof
of Theorem 2. If we consider equidistant sampling, as in (1), with
the sinc-kernel then, for a > 1, the series (1) converges globally
uniformly. However, a closer look at the expression (13) for the
sinc-kernel reveals that

1

2aπ

∫ aπ

−aπ

∣∣∣∣∣
N∑

k=−N

eikω1/a e−ikω/a

∣∣∣∣∣ dω1 ≥
1

π
log(N)

for all ω ∈ [−π, π]. That is, for equidistant sampling and recon-
struction with the sinc-kernel, a relation like (13) cannot hold, even
with oversampling. This observation is the basis for the divergence
result in [10] that was discussed in the introduction.

Proof of Theorem 2. Let 0 < σ < π be arbitrary but fixed and set
δ = (π − σ)/(2π). Using the functions ψn from Theorem 3, we
define

θ̂n(ω) := ψn
(ω + π

2π

)
, ω ∈ [−π, π].

Due to the properties of the functions ψn, we see that {θ̂n}n∈N is a
complete orthonormal system for L2[−π, π], and that

sup
n∈N
‖θ̂n‖L∞[−π,π] <∞.

Furthermore, for ω ∈ [−σ, σ], we have

1

2π

∫ π

−π

∣∣∣∣∣
N∑
n=1

θ̂n(ω)θ̂n(ω1)

∣∣∣∣∣ dω1

=

∫ 1

0

∣∣∣∣∣
N∑
n=1

ψ̂n
(ω + π

2π

)
ψn(τ)

∣∣∣∣∣ dτ ≤ C2, (14)

according to Theorem 3, because for ω ∈ [−σ, σ] we have (ω +
π)/(2π) ∈ [δ, 1]. Next, we study for f ∈ PW1

σ the expression

(UN f̂)(ω) :=

N∑
n=1

cn(f)θ̂n(ω)

=
1

2π

∫ σ

−σ
f̂(ω1)

N∑
n=1

θ̂n(ω)θ̂n(ω1) dω1.

We have

|(UN f̂)(ω)| ≤
1

2π

∫ σ

−σ
|f̂(ω1)|

∣∣∣∣∣
N∑
n=1

θ̂n(ω)θ̂n(ω1)

∣∣∣∣∣ dω1,

which implies, using Fubini’s theorem and (14), that

1

2π

∫ π

−π
|(UN f̂)(ω)| dω

≤ 1

2π

∫ σ

−σ
|f̂(ω1)|

(
1

2π

∫ π

−π

∣∣∣∣∣
N∑
n=1

θ̂n(ω)θ̂n(ω1)

∣∣∣∣∣ dω
)

dω1

≤ C2‖f‖PW1
σ
. (15)
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Now, let f ∈ PW1
σ and ε > 0 be arbitrary but fixed. Then there

exists an fε ∈ PW2
σ such that

‖f − fε‖PW1
σ
< ε. (16)

We have

1

2π

∫ π

−π
|f̂(ω)− (UN f̂)(ω)| dω

≤ 1

2π

∫ π

−π
|f̂(ω)− f̂ε(ω)|dω +

1

2π

∫ π

−π
|f̂ε(ω)− (UN f̂ε)(ω)|dω

+
1

2π

∫ π

−π
|(UN (f̂ − f̂ε))(ω)| dω

≤ ε+ C2ε+

(
1

2π

∫ π

−π
|f̂ε(ω)− (UN f̂ε)(ω)|2 dω

) 1
2

,

where we used (15) and (16). Since PW2
σ ⊂ PW2

π and {θ̂n}n∈N is
a complete orthonormal system in L2[−π, π], there exists a natural
number N0 = N0(ε) such that(

1

2π

∫ π

−π
|f̂ε(ω)− (UN f̂ε)(ω)|2 dω

) 1
2

< ε

for all N ≥ N0. Hence, we have

1

2π

∫ π

−π
|f̂(ω)− (UN f̂)(ω)| dω ≤ ε(2 + C2)

for all N ≥ N0. This shows that

lim
N→∞

1

2π

∫ π

−π
|f̂(ω)− (UN f̂)(ω)| dω = 0. (17)

Next, let T : PW1
π → PW1

π be an arbitrary but fixed stable LTI
system. We have

(Tf)(t)−
N∑
n=1

cn(f)(Tθn)(t)

=
1

2π

∫ π

−π

(
f̂(ω)ĥT (ω) e

iωt−
N∑
n=1

cn(f)ĥT (ω)θ̂n(ω) e
iωt

)
dω

=
1

2π

∫ π

−π
(f̂(ω)− (UN f̂)(ω))ĥT (ω) e

iωt dω

and consequently∣∣∣∣∣(Tf)(t)−
N∑
n=1

cn(f)(Tθn)(t)

∣∣∣∣∣
≤ ‖ĥT ‖L∞[−π,π]

1

2π

∫ π

−π
|f̂(ω)− (UN f̂)(ω)| dω (18)

for all t ∈ R. From (17) and (18) we see that

lim
N→∞

(
sup
t∈R

∣∣∣∣∣(Tf)(t)−
N∑
n=1

cn(f)(Tθn)(t)

∣∣∣∣∣
)

= 0.

Further, we have∣∣∣∣∣
N∑
n=1

cn(f)(Tθn)(t)

∣∣∣∣∣ ≤ 1

2π

∫ π

−π
|(UN f̂)(ω)ĥT (ω)| dω

≤ C2‖ĥT ‖L∞[−π,π]‖f‖PW1
σ
,

where we used (15) in the last inequality.

Remark 3. Since {θ̂n}n∈N is a complete orthonormal system in
L2[−π, π], it follows that the projections of the functions {θn}n∈N
ontoPW2

σ form a Parseval frame forPW2
σ , 0 < σ < π [17, p. 231].

Thus, Theorem 2 shows that there exist Parseval frames for which we
have convergence.

5. RELATION TO PRIOR WORK

The approximation of LTI systems by sampling series is a well-
studies field [18, 19, 20, 21, 22, 9], with significance in many areas
[23]. Recently, it has been shown that that the system approxima-
tion process with classical pointwise sampling can be instable [2].
However, it was already conjectured in [1] that this instability can be
overcome by using more general measurement functionals. General
measurement functionals have been analyzed before [24, 25, 26, 27],
but only for the signal reconstruction problem and not for the system
approximation problem. By proving that there exist measurement
functionals for which the system approximation process is always
stable, we also solved the conjecture from [1].
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