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ABSTRACT

Superoscillations are oscillations at frequencies above the
maximum frequency in the signal spectrum. Signals of very
small bandwidth can indeed oscillate at arbitrarily high fre-
quencies, over arbitrarily long intervals. This work addresses
the matter from a different angle, emphasizing scale and
discussing the following question: can an arbitrarily narrow
pulse be constructed by linearly combining arbitrarily wider
pulses? The connection with superoscillations and approxi-
mation theory is also discussed.

Index Terms— Pulse width, scale, superoscillations, ap-
proximation theory, linear combinations, bandwidth

1. INTRODUCTION

Some of the heuristic arguments that are often given to ex-
plain sampling theorems, or at least to render them intuitively
acceptable, are open to criticism. Consider, for example: “A
bandlimited signal contains no frequencies above a certain
limit, hence it cannot change to substantially new values in
a time less than one half-cycle of its highest frequency” — or
the following one: “a bandlimited signal has a maximum fre-
quency component, hence it cannot oscillate faster than that”.

Both statements are false. There are finite-energy sig-
nals of any given bandwidth that show arbitrarily high slew
rates, or that oscillate arbitrarily fast over arbitrarily long in-
tervals. The cost of these superoscillations in terms of signal
energy and some other consequences are treated in detail in
[1]. Yield-optimization is the subject of [2].

Berry [3] attributes the idea of superoscillations to Aharonov,
who had told him how he had constructed (using quantum-
mechanical arguments) signals that could “oscillate faster
than any of their Fourier components” [4].

Despite its relatively recent history, superoscillations have
already found several applications. Kempf [5] discussed them
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in reference to transplanckian frequencies in black hole ra-
diation and Berry [6] in the context of a quantum billiards
problem. The article [7] considers superoscillations in quan-
tum mechanical wave functions and some unusual associated
phenomena. Applications to superresolution and subwave-
length imaging have been given [8, 9, 10, 11]. The connection
between superdirectivity and superoscillations are explored
in [12, 13] to obtain subwavelength focusing schemes capa-
ble of focusing down to 0.6 times the diffraction limit, five
wavelengths away from the source. The work [14] claims
the formation of a focus at 75% the spatial width of the
diffraction limited sinc pulse, 4.8 wavelengths away from the
source distributions. The arbitrary compression of a temporal
pulse is studied in [15], which reports the design of a class
of superoscillatory electromagnetic waveforms and claims a
pulse compression improvement of 47% beyond the Fourier
transform limit. The article [16] shows that superpositions of
plane waves with random complex amplitudes and directions
show naturally superoscillatory behavior. The connections
between information theory and spectral geometry are ex-
plored in [17]. The article [18] deals with superoscillations
in monochromatic waves in several dimensions. Other ap-
plications to physics include [19, 20] and [21], the latter on
backflow, a phenomenon related to superoscillation.

Given the interest and range of the applications, it is
worthwhile to look at superoscillations in depth and from
more than one point of view. The goal of this paper is to
discuss constructions similar to superoscillations but related
to scale rather than frequency. Obviously, if f(x) oscillates at
a certain rate, f(ax) will oscillate at a different rate or scale,
determined by a. Superoscillations show that it is possible to
locally approximate the behavior of f(ax) but using frequen-
cies 1/a smaller, in a linear way. We consider the following
question: can a pulse f(ax) be built by linearly combining
pulses of widths at least 1/a greater?

2. PULSE APPROXIMATION

Superoscillations are oscillations at a rate that seems to be
ruled out by the bandwidth of the signal (which imposes only
an average rate, by a classical result of Tichmarsh). The av-
erage scale or frequency is determined by the bandwidth. Lo-
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cally, however, over finite but arbitrarily large intervals, the
signal may behave very differently. In a superoscillating sig-
nal, the bandwidth imposes an average behavior (zero density,
for example) on f(x), but locally the signal may behave like
f(ax), with a much greather than unity. Are there ways of
synthesizing pulses that behave like f(ax) by linearly com-
bining pulses like f(x)?

To pose a well defined question, let f(x) be a Gaussian
function. Is it possible to approximate f(ax) by linear combi-
nations of shifted, wider Gaussians? The equivalent question
for superoscillations would be the following: is it possible to
approximate a sinusoid f(ax) based on linear combinations
of sinusoids of frequencies smaller at least by 1/a, and possi-
bly phase shifted?

The question about pulses suggests the consideration of
linear combinations of the translates of a single function φ:

N∑
i=1

ai φ(t− ti).

A theorem of Norbert Wiener asserts that any function f ∈ L1

can be arbitrarily well approximated in the L1 norm by such
expressions if and only if the Fourier transform of φ, given by

φ̂(ω) =

∫ +∞

−∞
φ(t)e−i2πωtdt,

has no zeros. Wiener also showed that a similar result holds
in L2 if and only if the set of zeros of the Fourier transform
of φ has zero measure. Proofs of these results can be found in
[22, 23], for example.

The Gaussian function g(x) = e−at
2

satisfies the hy-
potheses of Wiener’s theorems. Therefore (picking for exam-
ple the L2 case), given any f ∈ L2 and ε > 0, there exists an
integer N and constants (ci)1≤i≤N and (ti)1≤i≤N such that∫ +∞

−∞

∣∣∣∣∣f(t)−
N∑
k=1

ck g(t− tk)

∣∣∣∣∣
2

dt < ε2.

The following is therefore true:

Theorem 1 Any function f belonging to L1 (or L2) can be
approximated arbitrarily well in the L1 (or L2) norm by lin-
ear combinations of translates of a Gaussian function:

f ∼
N∑
i=1

ai g(t− ti).

This approximation property, already noted in [24], is inde-
pendent of the value of the parameters of the approximating
Gaussian (thus independent of a in g(x) = e−at

2

). This is
somewhat surprising, given the possible extreme situations:
very rapidly varying functions being approximated by very
wide Gaussian functions (with a close to zero), or extremely
slowly varying functions, being approximated by very narrow
Gaussians (with a very large).

Corollary 1 Any scaled version of a Gaussian function
g(ax) can be arbitrarily well approximated in the L1 (or
L2) norms by linear combinations of translates of the origi-
nal Gaussian g(x).

The methods used by Wiener are not constructive, and do not
offer any hints on how to pick N , (ai)1≤i≤N and (ti)1≤i≤N ,
in order to approximate a given function. We take a more
constructive approach to Wiener’s theorem for Gaussian func-
tions, in the L2 case. Our method also shows that it is enough
to consider uniformly spaced (ti)1≤i≤N .

Given f(t) = e−at
2

, we consider approximations of the
form

N∑
k=−N

ck g

(
t− k

A

)
,

where g(t) = e−bt
2

, a > b and A is a positive real num-
ber. This corresponds to one of the two situations mentioned
above (one can be reduced to the other by taking Fourier
transforms).

The square of the L2 norm of the difference is

ξ = ‖f −
N∑

k=−N

ck g(t− k/A)‖2

=

∥∥∥∥∥f̂(ω)− ĝ(ω)
N∑

k=−N

ck e
−i 2πA ωk

∥∥∥∥∥
2

=

∥∥∥∥√π

a
e−a

′ω2

−
√
π

b
e−b

′ω2

PN (ω)

∥∥∥∥2 , (1)

where

a′ =
π2

a
, b′ =

π2

b
, PN (ω) =

N∑
k=−N

ck e
−i 2πA ωk.

Because a′ < b′, we may set a′ = b′ − c′, with c′ > 0. Thus,

ξ =

∥∥∥∥e−b′ω2

[√
π

a
ec

′ω2

−
√
π

b
PN (ω)

]∥∥∥∥2
=

(∫
I

+

∫
I

)
e−2b

′ω2

∣∣∣∣√π

a
ec

′ω2

−
√
π

b
PN (ω)

∣∣∣∣2 dω,
(2)

where I = [−A/2, A/2]. We now take PN (ω) to be the par-
tial sum of the Fourier series of

e(ω) =

√
b

a
ec

′ω2

in the interval I = [−A/2, A/2]:

PN (ω) =

N∑
k=−N

ck e
−i 2πA ωk ∼

√
b

a
ec

′ω2

.
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Fig. 1. The desired pulse e−t
2

(a) and its approximation (b),
which looks almost identical at the scale of the figure (the ap-
proximation error is shown in Fig. 2). The approximation was
built using linear combinations of translates of a template, the
wider pulse (c), given by e−0.1t

2
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Fig. 2. The approximation error corresponding to the example
given in Fig. 1.

This determines the value of the coefficients ck:

ck =
1

A

√
b

a

∫
I

ec
′ω2

e−i
2π
A kωdω.

Returning to (2), we see that for fixed A the integral over I
can be made small by selecting a sufficiently large N . This is
possible because the partial sums PN (ω) converge to e(ω) in
the L2 norm on the interval I = [−A/2, A/2]. The integral
over I can also be made small due to the presence of the factor
e−2b

′ω2

, which outweights the remaining terms.
Figures 1 and 2 show the result of approximating e−t

2

using translates of the template e−0.1t
2

and the corresponding
error. The number of translates used was 50 and A = 1.3.

3. DISCUSSION AND CONSEQUENCES

No linear combination of translates of a bandlimited function
can result in a wider spectrum. Thus, the approximation of

a narrow pulse by translates of a wider pulse seems impossi-
ble. Gaussians have the approximation properties discussed
because they are not bandlimited1. Their Fourier transform is
nonzero for any frequency, no matter how high. This is crit-
ical. Without it, it would have been impossible to construct
the example in Figs. 1–2.

The spectrum of a linear combination of the translates of
a Gaussian is given by a product, as seen in equation (1). One
of the factors is the Fourier transform of the original Gaus-
sian, which is simply another Gaussian. The other factor is
a function resembling a trigonometric polynomial, which is
completely determined by the coefficients of the linear com-
bination and the positions of the translates. Since the first
term of the product is never zero, it is theoretically possible
to shape the product as desired, using the trigonometric poly-
nomial as a shaping function.

Numerical problems are to be expected in extreme sit-
uations, due to the size of the Fourier coefficients and the
magnitude of the signals involved. The construction depends
on cancellation, which is fragile. Exactly the same can be
said about superoscillations. Outside the superoscillatory seg-
ment, the amplitude of the signal increases rapidly [1]. Yield-
optimization can be considered [2], but as the frequency and
number of superoscillations increase the numerical problems
will undoubtedly be felt.

Superoscillations seem to allow the encoding of arbitrary
amounts of information into an arbitrarily short segment of a
low-bandwidth signal, but there is no contradiction with in-
formation theory. The amplitude of the superoscillations de-
creases exponentially with the length of the superoscillating
segment, and the L2 norm of a maximally superoscillatory
wave function grows exponentially with the number of su-
peroscillations. This is consistent with Shannon’s capacity
formula B log2(1 + S/N), where S/N is the signal-to-noise
ratio. The formula demands that the power must grow expo-
nentially with the amount of compressed information [1].

Similarly, the synthesis of a narrow Gaussian using much
wider Gaussians, which seem to require much less bandwidth,
cannot be used to beat Shannon’s capacity formula. Gaus-
sians are not bandlimited, and the slight distortion imposed
by a bandlimited channel would distort the construction.

Note that there is no need to restrict the templates to the
Gaussian shape. We have based our discussion on Gaussians
simply as a matter of convenience. Other functions (with non-
vanishing Fourier transforms) would work.

The procedure described has interest even if the Fourier
transform of the pulse vanishes on sets of finite or even infinite
measure. In these cases, Wiener’s non-constructive theorems
no longer apply, and the closure of the translates cannot be
all of L2 or L1. However, it can be a subspace (the subspace
of functions with Fourier transforms vanishing on those sets).

1They are essentially bandlimited, though. One reviewer pointed out [25],
which describes an approach to sampling that considers “soft” prefilters and
includes functions such as Gaussians.
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For example, the closure of the translates of the sinc function
is a subspace of L2 containing bandlimited functions.

Finally, note that the construction given above also im-
plies that linear combinations of arbitrarily wide Gaussian
functions can approximate any function in L2, and not just
other Gaussians. This is because convolution with a suffi-
ciently narrow Gaussian produces an arbitrarily good approxi-
mation to the original function. The discretization of that con-
volution and the expression of the narrow Gaussian in terms
of wider ones would lead to the result.
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