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ABSTRACT
Motivated by the existing time-frequency peak filtering
(TFPF) algorithm, herein a robust time-varying filtering
(RTVF) algorithm is proposed for filtering and separating
multicomponent frequency modulation (FM) signals. The
performance of the TFPF based on windowed Wigner-Ville
distribution is limited by the linear constraint on the wave-
form of the received signal. The proposed RTVF significantly
improves the filtering performance with low complexity by
applying a sinusoidal time-frequency distribution, which al-
lows a sinusoidal constraint on the signal’s waveform. The
RTVF can successfully decompose a multicomponent signal
into individual components based on an initial instantaneous
frequency (IF) estimate of each component. Unlike existing
time-varying filters, the RTVF is much less sensitive to the
accuracy of the IF estimate, which can be gradually refined
by performing an iterative RTVF procedure.

Index Terms— Time-varying filtering, signal separation.

1. INTRODUCTION

There has been a great deal of research on instantaneous fre-
quency (IF) estimation of frequency modulation (FM) sig-
nals [1–4]. However, most reported estimation methods are
under the high SNR assumption. There are strong interests in
the development of IF estimation of FM signals in low SNR
environments. It has been a common practice that filtering
operations are used before applying estimation methods.

In the literature, the available time-frequency distributions
(TFDs) [5,6] of signals offer the possibility of performing fil-
tering in time-frequency (TF) domain. In [7], a windowed
WVD-based time-frequency peak filtering (WWVD-TFPF)
was reported. The principle of the TFPF is to encode the
noisy signal as the IF of an analytic signal, and then estimate
the peak in the WWVD of the encoded signal for obtaining
the underlying signal. The WWVD-TFPF is signal indepen-
dent and can achieve promising filtering performance even
though the IF information of the signal is unrecognized in the
TF domain [8, 9]. However, the WWVD-TFPF is biased for
encoded signals whose variation order of frequency contents
is higher than linear, and a limited window size is used to con-
trol the bias quantity. Therefore, high sampling rates are re-
quired to reduce the noise variance when using short window

sizes, which becomes impractical due to the requirements of
expensive computation and data memory resources. Further-
more, separating components from a multicomponent signal
has been impossible by using the WWVD-TFPF algorithm.

The limitation of the WWVD-TFPF lies in its short win-
dow length due to the nonlinearity of received signal wave-
form. Theoretically speaking, most signals modulated on a
sine-wave carrier can be approximated as a generalized sinu-
soidal waveform within a time interval. This motivates us to
pay the attention to the TFDs that present a continuum of delta
functions along a sinusoidal IF law, so that the window size
requirement could be substantially relaxed. This paper pro-
poses a robust time-varying filtering (RTVF) algorithm for fil-
tering and separating multicomponent FM signals with heavy
noise. The RTVF algorithm is based on a sinusoidal time-
frequency distribution (STFD) [10] instead of on the WWVD.
The STFD is designed for optimally tracking spectral contents
of encoded signals with sinusoidal IF variations, which over-
comes the linear restriction of the WWVD-TFPF.

This paper is organized as follows. Section 2 presents the
details of the RTVF algorithm. The bias analysis of the RTVF
algorithm is conducted in Section 3. Section 4 and Section 5
give numerical results and conclusions, respectively.

2. THE PROPOSED RTVF ALGORITHM

Let us consider a multicomponent FM signal model as

s(t) = x(t) + n(t) =

K∑
k=1

xk(t) + n(t), (1)

where K is the number of components and n(t) is the zero-
mean additive noise. Assume a sinusoidal FM (SFM) signal
with a sinusoidal IF fi(t) = µρ cos(2πfmt+ θ)

z(t) = ej2πµ
∫ t
0
ρ cos(2πfmλ+θ)dλ = ej

µ
fmρ sin(2πfmt+θ), (2)

where µ is the modulation index, fm is the modulation fre-
quency, ρ and θ are constant amplitude and phase. The STFD
of z(t) in (2) is based on a kernel adapted to the SFM signal

STFDz(t, f) = FT τ
{
h(τ)Kz(t, τ)

}
, (3)
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where FT τ denotes the Fourier transform on τ , h(τ) is a lag
window function, and Kz(t, τ) is the kernel function

Kz(t, τ) =
p

Π
i=1

{
z(t+ τ + ai)

biz∗(t− τ − ai)bi
}
. (4)

It is expected the STFD optimally concentrates signal energy
along the sinusoidal IF

FT τ
{
h(τ)Kz(t, τ)

}
= δ
(
f − µρ cos(2πfmt+ θ)

)
. (5)

One of the solutions to (5) can be resolved by using simple
trigonometric relations when p = 2, which gives

a1 = 0, a2 =
1

4fm
, (6)

b1 = πfmτ sin(2πfmτ), b2 = πfmτ cos(2πfmτ).

Therefore the kernel function in (4) is transformed into

Kz(t,τ) =
[
z(t+ τ)z∗(t− τ)

]fmτπ sin(2πfmτ) (7)

·
[
z(t+ τ +

1

4fm
)z∗(t− τ − 1

4fm
)
]fmτπ cos(2πfmτ)

.

The idea of the RTVF algorithm is to firstly encode the
signal s(t) in (1) into the IF of a unit amplitude analytic signal

zs(t) = ej2πµ
∫ t
0
x(λ)dλej2πµ

∫ t
0
n(λ)dλ = zx(t) · zn(t), (8)

and then the underlying signal x̂(t) is obtained by estimat-
ing the IF of the encoded signal zs(t), which can be con-
ducted by detecting the peak of the STFD of zs(t). How-
ever, the implementation of STFDzs(t, f) is expensive due
to the fast Fourier transform (FFT) on the kernel function.
Alternatively, the IF estimation of zs(t) can be realized by
a simple phase operation without the implementation of the
STFD. Specifically, the exponent of the kernel function in (7)
is dependent on the time lag τ , which permits a direct estima-
tion of the underlying signal by performing an operation on
the phase of the kernel by replacing bi in (4) with bi

2πτ . This
operation allows an unbiased recovery of a noisy sine signal
s(t) = ρ cos(2πfmt+ θ) + n(t), expressed as

E
{

Θzs(t, τ)
}

= E
{

arg
{
Kzs(t, τ)

}
· 1

2πτµ

}
= arg

{{
zx(t+ τ)z∗x(t− τ)

} fm sin(2πfmτ)
2

·
{
zx(t+ τ +

1

4fm
)z∗x(t− τ − 1

4fm
)
} fm cos(2πfmτ)

2

}
/µ

=ρ cos(2πfmt+ θ). (9)

where arg{·} and E{·} denote the phase of a complex value
and the expectation operator on random variable, respectively.

It is observed that the phase term Θzx(t, τ) is a constant
over the time lag τ , which gives a precise estimation of the
sine signal. In presence of noise, Θzs(t, τ) changes with the

variation of τ . We propose to denoise the noisy signal s(t)
modeled in (1) by taking the mean operation on the fluctuated
phase term of zs(t) over a real lag window h(τ)

x̂(t) =

K∑
k=1

Eτ

{
h(τ)Θk

zs(t, τ)

}
, (10)

where Θk
zs is the phase of the kth sub-kernel function on zs(t)

Θk
zs(t, τ) = arg

{
Kk
zs(t, τ)

}
/2πτµ (11)

= arg

{
2

Π
i=1

{
zs(t+ τ + aik)

} bik
2πτ
{
z∗s (t− τ − aik)

} bik
2πτ

}
/µ,

where a1k = 0, a2k = 1
4fik(t)

,b1k = πfik(t)τ sin
(
2πfik(t)τ

)
,

b2k = πfik(t)τ cos
(
2πfik(t)τ

)
, and fik(t) is the IF of the

kth component. Note that from (10) each component xk(t)
can be separated and filtered from the signal s(t) by

x̂k(t) =Eτ

{
h(τ)Θk

zs(t, τ)

}
. (12)

The filtering based on (10) is named as the robust time-
varying filtering (RTVF) since the noise variance can be
greatly reduced by using a long window h(τ). The difference
of the RTVF from the WWVD-TFPT is that the signal is
filtered by performing the operation in (10) instead of detect-
ing the peak of the WWVD of zs(t). From the viewpoint
of implementation, the operation in (10) is less complex by
avoiding the use of FFT operation. To implement the RTVF,
the IF information fik(t) in (11) should be known or esti-
mated in advance. It will be demonstrated that one iteration is
sufficient for a desirable filtering performance. However, the
filtered component using the initial IF estimate offers a new
IF estimate, which means that the RTVF can be formulated
in an iterative manner, i.e., the RTVF is repeated by updating
the IF information until the satisfied performance is achieved.

3. BIAS ANALYSIS OF THE RTVF ALGORITHM

The RTVF algorithm is proved to be unbiased in (9) for noisy
stationary signals with known fm. In practice, signals with
varying frequency as well as estimated IFs are often encoun-
tered, which makes the RTVF algorithm be biased. The zero-
mean white noise does not introduce stochastic bias to signal
estimate, and the bias only comes from the deterministic sig-
nal. In the following, the bias of monocomponent signal fil-
tering and the interference of multicomponent separation are
analyzed. Afterwards, the optimal lag window length of h(τ)
is determined by analyzing the derived bias expressions.

3.1. Bias analysis of RTVF for monocomponent signals

Defining τ ∈ [− L
2fs
, L
2fs

], where fs is the sampling rate and
L is the lag window length. According to (10) (where K =
1), the bias of the RTVF for monocomponent signals can
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be computed by B(t) = x(t) − E
{
x̂(t)

}
, where x(t) =

ρ cos
(
2π
∫ t
0
fi(λ)dλ + θ

)
. Let us consider the IF estimation

error, ∆f (t) = f̂i(t) − fi(t). Without specially referring to
any particular IF estimator, the IF error is modeled as a zero-
mean Gaussian noise process with a power variance σ2

e . Ac-
cording to the Weierstrass approximation theorem [11], we
assume the received signal with an arbitrary frequency varia-
tion is approximated as a linear frequency modulated (LFM)
signal x(t) = ρ cos(2πf0t + πrmt

2 + θ) within the lag win-
dow duration, where f0 is the initial frequency and rm is the
chirp rate. The estimated signal by the RTVF is derived as

x̂(t) = Eτ
{
h(τ)Θzx(t, τ)

}
= Eτ

{ 2∑
k=1

ρbk (13)

·
( sin

[
2πf0(t+ τ + ak) + πrm(t+ τ + ak)2 + θ

]
f0 + rm(t+ τ + ak)

−
sin
[
2πf0(t− τ − ak) + πrm(t− τ − ak)2 + θ

]
f0 + rm(t− τ − ak)

)}
,

where a1 = 0, a2 = 1

4f̂i(t)
, b1 = f̂i(t) sin

(
2πf̂i(t)τ

)
/2,

b2 = f̂i(t) cos
(
2πf̂i(t)τ

)
/2, and f̂i(t) = f0 + rmt+ ∆f (t).

It is difficult to deduce a closed-form bias expression from
(13) for a signal with time-varying frequency and IF estimate
error. The biases resulting from varying frequency and esti-
mated IF error, give different effects on the signal amplitude
and signal frequency. Thus, we independently analyze the bi-
ases due to estimated IF error and signal’s nonstationarity.

In the case of constant fi(t) with estimate errors, the es-
timated IF is f̂i(t) = f0 + ∆f (t). The bias of the RTVF is
derived from (13)

B1(t) ≈ x(t) · E
{

1−
(
f0 + ∆f (t)

)
f0

Eτ
{

cos[2π∆f (t)τ ]
}}

,

(14)

which shows that the value of the bias depends on ∆f , L and
x(t). The maximum deviation occurs at a peak or a valley of
the sinusoidal waveform, whereas the deviation is zero when
x(t) = 0, which means that the effect of the inaccurate IF es-
timation is to reduce the signal amplitude and does not affect
the signal frequency.

In the case of time-varying fi(t) with ∆f (t) = 0, the bias
for time-varying fi(t) is simplified into

B2(t) ≈ ρ cos(2πf0t+ πrmt
2 + θ) (15)

− Eτ
{

cos(2πf0t+ πrmt
2 + πrmτ

2 + θ)
}
.

3.2. Interference of RTVF for component separation

The RTVF algorithm can be used for component separation
according to (12). Next, we analyze the cross-interference be-
tween different components, and derive a sufficient condition

under which the component separation in (12) can be suc-
cessfully implemented. Due to space limitation, we assume a
multicomponent signal, where each component has constant
amplitude and frequency. Defining the encoded multicom-
ponent signal zx(t) = ej2πµ

∫ t
0

∑K
k=1 ρk cos(2πfmkλ+θk)dλ, we

derive that the kth component can be successfully separated
from others provided that

K∑
k′ 6=k

ρk′ cos(2πfmk′t+ θk′)

· Eτ
{
fmk
fmk′

sin(2πfmkτ) sin
(
2πfmk′(τ)

)
(16)

+
fmk
fmk′

cos(2πfmkτ) sin
(
2πfmk′(τ +

1

4fmk
)
)}
≈ 0.

It is seen that the interference value is dependent on the win-
dow length as well as the frequency difference between the
component of interest and other ones.

3.3. Determination of optimal window length

We are more concerned with the frequency information rather
than amplitude information. It is noted from (14) and (15) the
frequency information is slightly impacted by estimated IF
errors and significantly affected by signal’s nonstationarity.
Therefore, the optimal window size for spectral estimation
can be chosen by constraining the maximum of the elemen-
tary part πrmτ2 in (15)

max
τ

{∣∣πrmτ2∣∣} = πrm(
L

2fs
)2 <

π

N
, (17)

where N is a constant coefficient used to control the quantity
of bias. As a result, the expression of the window length as a
function of fs, rm, and N , is expressed by

1 ≤ L ≤ 2fs√
Nrm

. (18)

Although the above analysis is based on LFM signal model,
the derived result in (18) is also suitable for other nonstation-
ary signals. The reason is that the segment of a random non-
stationary signal within the lag window can be approximately
viewed as an LFM signal.

4. NUMERICAL RESULTS

Monocomponent filtering: The initial IF estimation for
the RTVF is conducted by detecting the peaks based on the
WWVD of the filtered signal by the WWVD-TFPF. We con-
sider an LFM signal and an SFM signal. The sampling rates
of LFM and SFM signal are fs=2560 Hz and 2048 Hz, re-
spectively. The window lengths of the WWVD-TFPF and the
RTVF for LFM signal are set as 9 and 301 samples according
to [7] and (18), whereas the lengths for SFM signal are 7 and
151, respectively. The simulation results of filtering and IF
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Fig. 1. (a) Filtering results in time (samples) and IF estimation for an LFM signal with SNR=-10 dB (left) and an SFM signal
with SNR=-4 dB (right) ((i) filtered signal by WWVD-TFPF. (ii) IF estimation of (i). (iii) filtered signal by RTVF. (iv) IF
estimation of (iii)). (b) NMSEs of IF estimation of filtered LFM signal (top) and SFM signal (bottom). (c) IF estimation of
LFM signal with SNR=-12 dB (left) and SFM signal with SNR=-5 dB (right) by the iterative RTVF ((i) WWVD-TFPF. (ii)
RTVF with 1 iteration. (iii) RTVF with 2 iterations. (iv) RTVF with 3 iterations).
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Fig. 2. (i) WWVD of unfiltered signal. (ii) BD of unfiltered
signal. (iii-iv) BDs of the two separated SFM components by
RTVF (1 iteration). (v) BD of clean multicomponent signal.

estimation are shown in Fig. 1 (a). The RTVF can better
restore the corrupted signal compared to the WWVD-TFPF.
Moreover, the RTVF is more effective in minimizing the
noise effects so that IF estimation is more accurate. The nor-
malized mean square errors (NMSEs) of IF estimation of the
filtered signals in Fig. 1 (a) are given in Fig. 1 (b). For per-
formance assessment, the RTVF with perfect IF information
is also simulated. Two issues are to be stressed. Firstly, com-
pared to the case with known IF, the RTVF with estimated
IF obtains desirable performance when SNR>-10 dB (LFM)
and SNR>-4 dB (SFM). Secondly, the RTVF outperforms
the WWVD-TFPF by a large margin. It should be mentioned
that the performance gap between the WWVD-TFPF and the
RTVF in Fig. 1 (a) and (b) can be further enlarged by ap-
plying the iterative RTVF. Fig. 1 (c) shows the IF estimation
results using the WWVD-TFPF and the iterative RTVF. We
note that desired IF estimation performance is achieved after
two or three iterations.

Multicomponent separation: The B-distribution (BD)
[12] is chosen to handle multicomponent signals because it
has a desirable capability of cross-term suppression. The ini-
tial IF estimation of multicomponent signals for the RTVF is

obtained based on the BD of the noisy signal by using the
method in [13]. A noisy multicomponent signal with two
overlapped SFM components is simulated at SNR=-2 dB. The
sampling rate and the window length are 1024 Hz and 65
samples, respectively. The BDs of the multicomponent signal
with and without noise is shown in Fig. 2 (ii) and (v). Based
on the estimated IFs of the two SFM components, the RTVF is
used for separating the multicomponent signal into individual
components. The BDs of two separated SFM components are
shown in Fig. 2 (iii-iv). Note that the SFM components are
well filtered and separated with a much better TF resolution.

5. CONCLUSION & RELATION TO PRIOR WORK

The proposed RTVF algorithm is an extension of the WWVD-
TFPF algorithm in [7]. The RTVF can substantially improve
the filtering performance, and it is accomplished with linear
complexity O(KNs) (Ns is number of samples) due to the
avoidance of FFT operation and peak search process. Two
practical problems are solved. Firstly, the requirement of high
sampling rates is relaxed by using large window sizes. Sec-
ondly, the RTVF can efficiently separate multicomponent sig-
nals into individual components at low SNR levels because of
its superior performance in suppressing interferences.

The RTVF can be viewed as a novel time-varying fil-
ter compared to conventional time-varying filters [14–17],
which obtain the underlying signal by an inverse TF op-
eration of a masked TFD. However, the masked TFD is
generally not valid for inversion process. The RTVF is not
based on TF inversion, thus the validity problem is avoided.
Besides, conventional time-varying filters require accurate
IF estimate [18–20]. Although an initial IF estimation is
also required, the iterative RTVF process can tolerate certain
amount of IF errors and gradually obtain more accurate IF
information.
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