
 

  
Abstract—Compressive Sampling is an attractive way 

implementing analog to information conversion (AIC), of which 
the most successful hardware architecture is modulated wideband 
converter (MWC). Unfortunately, the MWC has high hardware 
complexity owing to high degree of freedom of the random 
waveforms constructing the measurement matrix. To reduce the 
complexity, in this letter, we present a novel Compressive 
Circulant Matrix based AIC (CCM-AIC) generating random 
waveforms by cyclic shift of a special sequence with unit amplitude 
and random phase in frequency domain. Theoretical analysis 
shows this scheme is optimal for signals sparse in frequency. 
CCM-AIC outperforms MWC and is more robust. Simulations 
classify the above analysis. 
 

Index Terms—Analog to information conversion, circulant 
matrix, compressive sampling, joint sparse recovery  
 

I. INTRODUCTION 
NALOG TO INFORMATION CONVERSION (AIC) [1] 
is motivated by the desire to sample signals directly at its 

information rate. The emerging area compressive sampling (CS) 
[2], [3] is a nascent sampling theorem asserting that the number 
of measurements truly required to accurately reconstruct a 
signal, is, in fact, independent of dimensionality and instead 
solely proportional to the degree of underlying information. By 
exploiting the property of sparsity, CS indicates a way of 
implementing AIC. Until now, thousands of papers concerning 
with CS have been published, unfortunately, however only a 
few of them are related to the problem of implementing AIC by 
use of CS. As far as know there are several hardware 
architectures based on CS implementing AIC have been 
presented, such as random demodulation [4], [5], random 
filtering [6], [7], random convolution [8], compressive 
multiplexer [9], MWC [10] and its applications, such as radar 
sub-Nyquist sampling [11] and wideband spectrum sensing [12], 
successive approximation ADC architecture based compressive 
sampling [13], [14] which provides a novel strategy without 
introducing analog mixing, of which the most attractive 
technique is MWC, which has been extended in the framework 
of Xampling [15]. MWC consist of m parallel physical channels, 
each comprise an independent mixing function randomly 
generated, a low pass filter (LPF) and a low rate commercial 
analog to digital converter (ADC). However, owing to the 
independence of mixing functions between channels, the MWC 
exhibits high degree of freedom, which, results in high 

 

complexity in realistic hardware design. Unfortunately, most of 
the recently presented papers concerning MWC focus on the 
problem of joint sparse signal recovery which resolves 
simultaneous signal recovery from multiple measurements [16], 
[17]. We furthermore fully investigate the design of novel 
architecture with low hardware complexity in this letter. 

To reduce the complexity, new structure should be 
introduced to reduce the degree of freedom. The Subsampled 
Circulant Matrix based Analogue Compressed Sensing 
(SCM-ACS) [18] is a novel structure recently proposed to 
reduce the number of channels, which relies on the Zadoff-Chu 
sequence popular in communication technology. The 
SCM-ACS employs radio frequency accurate switches and 
shrinks multichannel into a single one. Unfortunately, 
SCM-ACS suffers from accurate timing constrains. Analog 
switches should be configured on and off from every hundreds 
of picoseconds when sampling signals whose Nyquist frequency 
exceeding 1GHz with bandwidth occupancy exceeding 
hundreds of megahertz, besides, which is more difficult, the 
input signal is implicitly assumed to be identical every time the 
switches are turned on, those requirements challenge most 
commercial devices and are unpractical. Besides, the 
Zadoff-Chu sequence used by SCM-ACS is a complex-valued 
mathematical sequence, from the engineering perspective, 
essentially stressed in this letter, the way of hardware 
implementation of the sequence, has not been demonstrated. 
However, the random waveform we choose in this letter is 
real-valued in time domain and can be effectively implemented.  

The CCM-AIC this letter presented combines the idea of 
random convolution and MWC. CCM-AIC generates the 
mixing functions by cyclic shift of a single carefully designed 
sequence, which significantly reduces the degree of freedom of 
the system, and reuse the LPF, ADC and parallel structure of the 
MWC. We present detail analysis of CCM-AIC and then 
derives the coherence bound of the sensing matrix, and finally 
proves the sufficient condition to guarantee exact recovery in 
the term of minimal number of measurements needed.  
Simulation results show that the CCM-AIC scheme has better 
success recovery performance compared to MWC. Owing to the 
novel structure introduced by cyclic of the sequence, the 
sampling process of CCM-AIC is identical to the cyclic 
convolution proceeding by time shifted integration, which 
minimize the effects of the zero-mean Gauss random noise, 
therefore the CCM-AIC behaves more robust than MWC 
especially when the signal to noise ratio (SNR) is low.  
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II. THE ARCHITECTURE OF CCM-AIC 

A. Signal Model 
It is assumed that analog signal x(t), termed as multiband 

signal, is continuous and bandlimited, whose spectrum is 
supported on N disjoint bands with band width no exceeding B. 

Fig.1 depicts a typical multiband signal model. The receiver 
sees a three band signal with random carrier frequencies which 
are unknown in advance.  
 
 
 
 
 
 
 

 
 

B. System Description 
The architecture of CCM-AIC is presented in Fig. 2. The 

signal x(t) enters m channels simultaneously. In the ith channel, 
x(t) is multiplied by a mixing function which is a cyclic shift 
copy of p(t). After mixing, the spectrum of the signal is 
truncated by a low pass filter h(t) with cutoff frequency fs/2 and 
then the filtered signal can be sampled at a rate fs sufficiently 
low compared to the bandwidth of the signal, in which case 
existing commercial devices can be used. 

 
 
 
 
 
 

 
 
 
 
 

 
The mixing function p(t) is random, Tp periodic, and real 

valued, whose energy spreads across the period.  
 ( ) , / ( 1) /k p pp t kT M t k T Mα= ≤ ≤ +  (1) 
where 0 1k M≤ ≤ − , , ( )i k ip tα τ= +  is the ith cyclic shift 
copy of p(t) and 1 i m≤ ≤ . 

The alternating rate of the random waveform p(t) should be 
no less than the signal’s Nyquist frequency fNYQ to guarantee no 
distortion of the original signal’s spectrum and thus we have  
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Operator a    denotes the minimal integer no less than a . 
The time delay parameter iτ  is chosen randomly and 

independently and is defined by the following formula 
 / ,0 1i i p ic T c Mτ = ≤ ≤ −  (3) 

Denote  

 { } { }1
0,1,..., 1i i mc M

≤ ≤
Ω = ⊂ −  (4) 

as the support set of  the time delay parameter. 

C. Frequency domain analysis 
According to the property of the Fourier transform, the 

spectrum of ( )ix t is the fp repetition of the spectrum of x(t) so 
that the low pass filtered contains a mixture of the spectrum 
contents from the entire Nyquist frequency range of the original 
signal and each has unique signature that can be discerned.  

So the discrete time Fourier transform of the measurements of 
the ith channel yi[n] can be expressed as 
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where X(f) is the Fourier transform of x(t) and L0 is selected as 
the minimal of 

 0( 1)
2 2

NYQs
p

ff
L f+ + ≥  (6) 

to make sure that all nonzero spectrum slices of X(f) are 
contained in the summation. The number of spectrum slices is 
L=2L0+1. 

The Fourier expansion of the mixing function of the ith 
channel is 
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where the coefficient has the following form 
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Let A be the discrete Fourier transform (DFT) matrix with 
dimension M M× and with ith column 
 0 1 ( 1), ,...,

Ti i M i
i β β β⋅ ⋅ − ⋅ =  A  (10) 

where 0 1i M≤ ≤ − . Let B be a matrix with dimension 
M L× with columns

0 0
, ,L L−  A A , some kind of 

rearrangement of columns subset of matrix A , ΩR be a 
m M× matrix selecting only rows of S indexed by support set 
Ω , S be the M M× circulant matrix with rows ,i kα  and D be 
the dialog matrix with entries dl. So we finally get 
 Ω= R SBDΘ  (11) 
Matrix Θ combines measurement matrix and representation 
matrix, which termed as sensing matrix. Matrix Θ has entries cil. 
At this stage, formula (5) can be properly evaluated with known 
matrix Θ and measurements yi[n], and then the unknown 
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Fig. 1  Example of a typical multiband signal: three RF transmissions 

with different carrier frequencies 
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Fig 2.  The system architecture of CCM-AIC 
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nonzero spectrum slices can be recovered. 
The circulant matrix S is defined as follows 

 *1
M

S = A PA  (12) 

The factor 1/M is used to guarantee the columns of S having 
the normalized norm. The nonzero entries of diagonal matrix P 
are defined as follows   

If M is even, we have 
1) { }0, 1, 1qq p= = −  with equal probability 
2) { }/ 2, 1, 1qq M p= = − with equal probability 

3) 0 / 2, qj
qq M p e ω< < = where qω is the random phase, 

drawn uniformly from [0, 2 ]π . 
4) */ 2 1, q M qM q M p p −< ≤ − = the conjugate of M qp − . 
If M is odd, we have 
1) { }0, 1, 1qq p= = −  with equal probability 

2) 0 ( 1) / 2, qj
qq M p e ω< ≤ − = where qω is the random phase, 

drawn uniformly from [0, 2 ]π . 
3) *( 1) / 2 1, q M qM q M p p −− < ≤ − = the conjugate of M qp − . 
The sequence constituting the random function p(t) 

corresponds to the first row of matrix S. Instead of directly 
evaluating the performance of the specially designed sequence, 
we treat the matrix S as a whole and incoherence commonly 
used in CS is then exploited to evaluate the performance of S, 
equivalently, the performance of the sequence introduced by (1). 
This part is detailed in Section III. 

We rewrite (5) as 
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where xi[n] denotes the sampling sequence of the lth spectrum 
slice of x(t) with rate fs and cil denotes the entries of Θ . 
Once Θ and measurements are given, the unknown can be 
recovered with accordance to (13). For each value of n, (13) 
corresponds to the single measurement vector (SMV) problem 
aimed at recovering sparse vector from sub-samples. With 
multiple and consecutive values of n, (13) can be casted as the 
multiple measurement vector (MMV) problem, in which case 
the unknown sparse vectors can be jointly recovered. 

III. THEORETICAL ANALYSIS 
The mutual coherence is the maximum calculation of any 

columns. ΩR is an index matrix selecting only rows of S 
indexed by support set Ω . D is a dialog matrix and can be 
interpreted as multiplying each column of S by some constant 
which will be normalized in the process of mutual coherence 
calculation. So ΩR  and D do not affect the mutual coherence of 
S with any basis matrix either. As a result, it is sufficient to 
establish the signal recovery guarantee in the term of mutual 
coherence between S and any orthogonal basis matrix. 

Lemma 1 (incoherent measurement [19]): Let m MC ×∈Φ and 
M MC ×∈Ψ be measurement matrix and representation matrix 

respectively. Then with high probability the measurements 
defined by =y Φx can uniquely determine the unknown K 

sparse signal x if 
 logm a K Mµ≥  (14) 
where a is some positive constant and µ is the mutual coherence 
between Φ and Ψ . It is showed that [20] 
 1 Mµ≤ ≤  (15) 

Lemma 2 [8]: Let Ψ be an arbitrary orthogonal basis matrix, 
let S be the measurement matrix defined by formula (12). 
Choose 0 1η< < , then with probability at least 1 2η− , the 
coherence µ will obey 

 22 log( )Mµ η≤  (16) 
Remark: suppose =Ψ A , it is obviously that 1µ = and then 

 logm K M∝  (17) 
Which means that the measurements guarantee reconstruction 
grows linearly with K and log M .Formula (17) guarantees that 
this design of measurement matrix presented by this letter is 
optimal for signals sparse in frequency domain and achieves the 
minimal measurements.  

IV. NUMERICAL SIMULATIONS 
To evaluate the performance of CCM-AIC we simulate the 

system on test signals contaminated by zero-mean Gaussian 
noise. The test signal in the simulation is defined as x(t)+n(t) 
while x(t) is the multiband signal expressed as follows 

 
1

( ) sinc( ( )) cos(2 ( ))
N

i i i i
i

x t E B t u f t uπ
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and ( )n t is the Gaussian noise. 
fNYQ is fixed to be 1GHz. B denotes the maximum bandwidth 

and is of value 10MHz. The sampling frequency fs=fp, while 
fp=10.2MHz is chosen a little more than the signal’s maximum 
bandwidth B to avoid spectrum aliasing, in which case the 
random waveform alternates at a rate M=197. Variable N 
represents the number of active bands. Ei denotes the amplitude 
of each band. fi is the carrier frequency which is chosen 
randomly and uniformly. ui is the time offset. The exact values 
X(f) takes on the support do not affect the simulation result and 
thus Ei and ui are fixed in all our simulations. 

Simultaneous orthogonal matching pursuit (SOMP) [21] 
proved a potential choice for engineers is adopted to implement 
signal recovery in the simulations because it is fast and easy to 
implement. Success is reported when all nonzero xl[n] are 
identified. Success rate, the same to empirical recovery rate in 
[10], is defined as the ratio of the number of successes and total 
trials. The greater the value, the better the performance. For 
each experiment, 500 trials are performed. 

We demonstrate the results for two different cases: noise-free 
(where n(t) equals zero) and noisy. In noise-free case, signals 
with different values of N are evaluated, specially, N=2, 3, 4. 
We want to compare the performance with input signals of 
different sparsity. In noisy case, the signal is fixed with N=3. We 
want to compare robustness when fixed input signal 
contaminated by Gaussian noise. The results are presented in 
Fig. 3 and Fig. 4. 
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It is observed that the recovery performance of the CCM-AIC 
is not affected by the reduction of the degree of freedom, while 
on the contrary this scheme has competitive recovery 
performance to MWC and even outperforms MWC especially 
when m is small. Full random measurement matrix is sufficient 
for the signal recovery but not necessary. The results show that 
the measurements CCM-AIC needed to guarantee the recovery 
is comparative to the MWC and even less in some cases, which 
provides a profile that the decrease of degree of freedom is 
achieved without sacrifice of recovery accuracy. 

The setup for noisy simulation is: The number of 
measurement channels is fixed to be 24, 34 and 44 separately, in 
each case the value of SNR varies from 5dB to 35dB with a step 
2dB. Fig. 4 depicts the results.  

Owing to the circulant structure of CCM-AIC, the 
measurements taken by CCM-AIC can be interpreted as the 
random convolution between the original signal and the mixing 
function. This process is a kind of integral, which minimizes the 
effect of the zero-mean Gaussian noise. This architecture 
enables more robustness against Gaussian noise which is 
familiar in typical applications, such as quantitative error of the 
analog to digital converter. 

It is observed that for various measurement channels, the 
CCM-AIC behaves more robust than MWC. This difference in 
performance enlarges with the increase of the number of 
channels. It is conjectured that this trend will continue with 
larger value of the number of channels. This is based on the fact 
that the increase of the number of channels can be interpreted as 
the increase of the measurements by convolution. In reality, the 
sampling process inevitably involves some certain noise 
introduced by the low pass filter, the ADCs and so on. 
Fortunately, the circulant structure presented by CCM-AIC 

naturally bears with the capacity of noise suppression, which 
enables a more broad application prospects. 

V. CONCLUSION 
The proposed CCM-AIC architecture reuses a single random 

waveform to generate mixing functions between channels by 
cyclic shift, which significantly reduce the degree of freedom 
whereas preserves better recovery performance especially when 
the measurements are highly contaminated with Gaussian noise 
commonly inevitable. Future work will elaborate on the general 
design principle of this kind of matrix and analysis of its 
robustness theoretically. 
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Fig. 3.  Performance comparison between 
CCM-AIC and MWC for noise free case 
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Fig. 4.  Performance comparison between     

CCM-AIC and MWC: success rate versus SNR 
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