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ABSTRACT

We present reconstruction algorithms for smooth signals with block

sparsity from their compressed measurements. We tackle the issue

of varying group size via the group-sparse least absolute shrinkage

selection operator (LASSO) as well as via latent group LASSO reg-

ularizations. We achieve smoothness in the signal via fusion. We de-

velop low-complexity solvers for our proposed formulations through

the alternating direction method of multipliers.

Index Terms— Compressed sensing, block sparsity, smooth-

ness, signal reconstruction

1. INTRODUCTION

Compressed sensing (CS) [1, 2] is one of the most exciting topics of

present-day signal processing. Signal reconstruction from its low-

dimensional representation becomes a possibility, given the sparse

nature of the signal and, incoherence and/or restricted isometry prop-

erty (RIP) [2] of the sensing/measurement process. In this regard, a

number of approaches can be used, e.g., basis pursuit (BP) [3], least

absolute shrinkage and selection operator (LASSO) [4] and greedy

algorithms [5]. In order to exploit the structure of the signal being

sensed, a number of variants of LASSO have become popular, e.g.,

group LASSO (G-LASSO) [6], sparse group LASSO (SG-LASSO)

[7] and fused LASSO (F-LASSO) [8], etc. In this paper we propose

new LASSO formulations to handle block sparse smooth signals.

Smooth signals are often encountered in a wide range of engineer-

ing and biological fields. In engineering, signals observed in image

processing, control systems and environment monitoring are often

smooth or piece-wise smooth. In biology, a similar structure is ob-

served, e.g., in protein mass spectroscopy [8]. The goal is to recover

such structured signals from noisy and/or under-sampled measure-

ments. A related topic is signal smoothing which deals with remov-

ing random outliers. Apart from being smooth, such signals can

often be represented as sparse in some basis. This sparsity pattern

normally varies in terms of the location and block size of the sparse

coefficients. The challenge for signal reconstruction is to exploit the

block sparsity with varying block sizes, while keeping smoothness

intact and using fewer measurements, but all at low complexity. In

the CS domain, signal smoothness has been handled by using a fu-

sion constraint in [8]. The fusion is also known as total variation

(TV) in the image processing literature. Apart from fusion, [8] also

proposes an ℓ1-norm penalty to cater for signal sparsity. However,

since most of the signals are block sparse, [8] cannot give efficient

results. To cater for the block sparsity, one can replace the ℓ1-norm

penalty with a group penalty. Although this approach can handle

the block sparsity very well, it only offers fixed group sizes and

causes complete groups to be zero or nonzero. To avoid elimina-

tion of small sets of nonzero elements, a very small group size is
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opted but that can make the algorithm inefficient in eliminating large

blocks of zero elements. In this regard, we propose to use a moderate

group size along with an ℓ1-norm penalty over the signal, to create

sparsity within the groups. Thus by using fusion in combination with

an ℓ1-norm penalty and a moderate group size, a smooth signal can

be reconstructed with high accuracy. The problem of varying group

sizes can also be handled by using the concept of latent groups, see

[9] and references therein. These are basically overlapping groups,

with recurring signal elements in possibly multiple groups. Thus, an

element lost in one group may resurface through another group af-

ter reconstruction. So we also propose to use such latents groups in

combination with a fusion constraint to recover block sparse smooth

signals with varying block sizes. Note that a work on using over-

lapping groups over the fusion function instead of the signal struc-

ture has appeared in [10], which however requires complete signal

samples. Instead, we propose overlapping groups and fusion penal-

ties over the actual signal for under-determined systems. Thus, we

exploit the actual structure of the signal rather than the difference

of elements. Further, in order to solve the proposed formulations,

we derive low-complexity algorithms based on the alternating di-

rection method of multipliers (ADMM) [11]. The reason for using

this version of the augmented Lagrangian methods is primarily the

non-separability of the fusion penalty in terms of the elements of the

signal. Thus, the general convergence properties of ADMM can be

used to guarantee optimal results for our proposed algorithms.

Notations. Matrices are in upper case bold while column vectors

are in lower case bold, [X]i,j is the (i, j)th entry of the matrix X,

[x]i is the ith entry of the vector x, IN is the identity matrix of size

N ×N , (·)T is transpose, x̂ is the estimate of x,
∆
= defines an entity,

‖x‖p = (
∑N−1

i=0

∣

∣[x]i
∣

∣

p
)1/p is the the ℓp norm of x, sign(x) is the

sign function which takes values −1 and 1 depending on the polarity

of the element x, whereas the function (x)+ = x if and only if x > 0
otherwise (x)+ = 0.

2. SIGNAL RECONSTRUCTION

Let x be the N × 1 recoverable signal. Given M measurements, the

sensed signal can be written as

y = Φx+ v (1)

where y is an M × 1 measurement vector, Φ is an M × N mea-

surement matrix (M < N ) with compression ratio µ
∆
= M/N and

v is an M × 1 zero-mean additive white Gaussian noise vector with

variance σ2
v . To recover the signal from the compressed measure-

ments while keeping the signal structure in tact, we propose below,

two LASSO formulations.

2.1. Sparse Group LASSO with Fusion

Through sparse group fused LASSO (SGF-LASSO), we can resolve

the issue of signal smoothness, as well as, that of fixed group sizes.
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The optimization problem can be formulated as

x̂ = argmin
x

1

2
‖y −Φx‖22 + λe‖x‖

1
1

+λg

G−1
∑

i=0

‖xi‖
1
2 + λf

N−1
∑

j=1

‖[x]j − [x]j−1‖
1
1 (2)

where xi is an N/G × 1 sub-vector of x, representing one of G
groups over the elements of x, i.e., x = [xT

0 ,x
T
1 , · · · ,x

T
G−1, ]

T . We

can see from (2) that λg

∑G−1
i=0 ‖xi‖

1
2 accounts for group sparsity,

λe‖x‖
1
1 for element-wise sparsity and λf

∑N−1
j=1 ‖[x]j − [x]j−1‖

1
1

accounts for fusion within the elements of x, such that the effect

of each penalty becomes severer with increasing penalty parame-

ters, i.e., λg , λe and λf , respectively. For a moderate value of G,

the proposed formulation can tackle the varying group size problem

by creating sparsity within the group along with fusing consecutive

elements. Note that, for λg = λf = 0, (2) reduces to the stan-

dard LASSO problem, for λf = 0, (2) reduces to SG-LASSO, for

λe = λf = 0, (2) takes the shape of G-LASSO and for λg = 0, (2)

becomes F-LASSO.

Solver for SGF-LASSO

In order to solve the SGF-LASSO problem via ADMM, we intro-

duce two auxiliary variables u and z of size N × 1. Thus, (2) can be

written as

[x̂, û, ẑ] = argmin
x,u,z

1

2
‖y −Φx‖22 + λe‖u‖

1
1

+ λg

G−1
∑

i=0

‖ui‖
1
2 + λf‖z‖

1
1

s.t. ui = xi, 0 ≤ i ≤ G− 1, z = Dx (3)

where ui is an N/G×1 sub-vector of u, i.e., u = [uT
0 ,u

T
1 , · · · ,u

T
G−1, ]

T ,

and D is the difference matrix with [D]j,j = −1, [D]j,j+1 = 1, for

0 ≤ j ≤ N − 2 and [D]N−1,N−1 = 1, such that ‖Dx‖11 equals

the element-wise fusion. From (3), the Lagrangian problem can be

written as

L(x,u, z,ρu,ρz) =
1

2
‖y −Φx‖22 + λe‖u‖

1
1

+ λg

G−1
∑

i=0

‖ui‖
1
2 + λf

N
∑

j=2

‖z‖11

+

G−1
∑

i=0

ρ
T
ui
(ui − xi) +

cu
2

G−1
∑

i=0

‖ui − xi‖
2
2

+ ρ
T
z (z−Dx) +

cz
2
‖z−Dx‖22 (4)

where ρu (with sub-vectors ρui
, for 0 ≤ i ≤ G − 1) and ρz are

Lagrange multipliers and, cu and cz are positive constants. The so-

lution of (3) is generated by the following successive approximations

x
[n] = argmin

x

L
(

x,u[n−1], z[n−1],ρ[n−1]
u ,ρ[n−1]

z

)

(5)

u
[n] = argmin

u

L
(

x
[n−1],u,ρ[n−1]

u

)

(6)

z
[n] = argmin

z

L
(

x
[n−1], z,ρ[n−1]

z

)

(7)

and the multipliers are updated as

ρ
[n]
u = ρ

[n−1]
u + cu(x

[n] − u
[n]) (8)

ρ
[n]
z = ρ

[n−1]
z + cz(Dx

[n] − z
[n]). (9)

The closed-form solution for (5) at the nth iteration can be derived

to be

x
[n] =

(

Φ
T
Φ+ czD

T
D+ cuIN

)

−1

×
(

Φ
T
y −D

T
ρ
[n−1]
z + czD

T
z
[n−1] − ρ

[n−1]
u + cuu

[n−1]
)

.

(10)

We can see from (10) that the matrix inversion part does not change

during the iterations so that it can be performed off-line, resulting

in reduced complexity. Note that the matrix inversion lemma can

be used to further ease the computations involved in the inversion

operation. For u, note that the optimization involves two penalties,

i.e., apart from penalizing each element of u for sparsity, we need

to optimize on each of its sub-groups as well. Since both penal-

ties are non-differentiable, we utilize the fact that soft threshold-

ing generates a minimizer for the cost function involving λe‖ui‖
1
1

[4], and for the cost function involving λg‖ui‖
1
2, the minimizer is

su = ui/‖ui‖
2
2 in case ‖ui‖

2
2 6= 0 and the minimizer is a vector su

such that ‖su‖
1
2 < 1 in case ‖ui‖

2
2 = 0 [7]. Thus the closed-form

solution of (6) for the ith subgroup at the nth iteration can be written

as

u
[n]
i =

(

‖S

(

x
[n−1]
i +

ρ
[n−1]
ui

cu
,
λe

cu

)

‖22 −
λg

cu

)

+

×

S

(

x
[n−1]
i +

ρ[n−1]
ui

cu
, λe

cu

)

‖S

(

x
[n−1]
i +

ρ
[n−1]
ui

cu
, λe

cu

)

‖22

(11)

for 0 ≤ i ≤ G − 1, where S(s, λ)
∆
= sign(x)(x − λ)+ is the soft

thresholding operator. Thus the estimate of u can be obtained as

u
[n] = [u

[n]T
0 ,u

[n]T
1 , · · · ,u

[n]T
G−1]

T
(12)

which along with x[n] is used to update ρ
[n]
u in (8). Now from (7),

the closed-form expression for the estimate of z at the nth iteration

can be derived as

z
[n] = S

(

Dx
[n−1] +

ρ
[n−1]
z

cz
,
λf

cz

)

(13)

which subsequently updates ρ[n]
z in (9).

2.2. Latent Group LASSO with Fusion

For the latent group fused LASSO (LGF-LASSO), the signal is seg-

mented into many overlapping groups of certain sizes1. In contrast

to the disjoints groups, overlapping groups can reselect the elements

from other groups. We create G̃ overlapping groups through an

N/G × N sub-selection matrix Wi which selects N/G rows from

an identity matrix IN . An overlapping group can then be obtained

by the relation, Wix, for 0 ≤ i ≤ G̃ − 1, where Wi is such

1In this paper, we consider overlapping groups of fixed sizes, but the con-
cept can easily be extended to varying sizes as well.
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Fig. 1. Above: Disjoint groups. Below: Overlapping groups.

that W
∆
= [WT

0 ,W
T
1 , · · · ,W

T
G̃
]T . Each sub-selection matrix Wi

repeats K rows of Wi−1, where K is the overlapping factor and

1 ≤ K ≤ N − 1. Figure 1 schematically shows the difference be-

tween disjoint (K = 0) and overlapping groups (for K = N/(2G)).
We can see that the overlapping groups can solve the problem of the

fixed group size but the price to be paid is in terms of computational

complexity which increases excessively with the factor K due to

the related increase in G̃. Now, the optimization problem for LGF-

LASSO can be formulated as

x̂ = argmin
x

1

2
‖y−Φx‖22 +λg

G̃−1
∑

i=0

‖Wix‖
1
2 +λf‖Dx‖11. (14)

Solver for LGF-LASSO

To solve the LGF-LASSO problem, we again turn to ADMM. By

introducing a new auxiliary variable ũ of size G̃N/G, (14) can be

written as

[x̂, ˆ̃u, ẑ] = argmin
x,ũ,z

1

2
‖y −Φx‖22 + λg

G̃−1
∑

i=0

‖ũi‖
1
2 + λf‖z‖

1
1

s.t. ũi = Wix, 0 ≤ i ≤ G̃− 1, z = Dx (15)

where ũi is an N/G×1 sub-vector of ũ, i.e., ũ = [ũT
0 , ũ

T
1 , · · · , ũ

T
G̃−1

, ]T .

Now the Lagrangian for (15) can be written as

L(x, ũ, z,ρũ,ρz) =
1

2
‖y −Φx‖22 + λg

G̃−1
∑

i=0

‖ũi‖
1
2 + λf

N
∑

j=2

‖z‖11

+

G̃−1
∑

i=0

ρ
T
ũi
(ũi −Wix) +

cu
2

G̃−1
∑

i=0

‖ũi −Wix‖
2
2

+ ρ
T
z (z−Dx) +

cz
2
‖z−Dx‖22 (16)

where ρũ collects the Lagrangian multipliers with sub-vectors ρũi

for 0 ≤ i ≤ G̃ − 1. Now the successive approximations for the

solution of (16) w.r.t. x, ũ and ρũ can easily be obtained by solving

x
[n] = argmin

x

L
(

x, ũ[n−1], z[n−1],ρ
[n−1]
ũ ,ρ[n−1]

z

)

(17)

ũ
[n] = argmin

u

L
(

x
[n−1], ũ,ρ

[n−1]
ũ

)

(18)

ρ
[n]
ũ = ρ

[n−1]
ũ + cu(x

[n] − ũ
[n]) (19)

whereas, the estimates of z and ρz are the same as in (7) and (9),

respectively.

3. SIMULATIONS

In this section, we present some simulation results to compare the

performance of our proposed algorithms. We compare the perfor-

mance of SGF-LASSO, LGF-LASSO and G-LASSO. We consider

a cloud reflectivity data from the Earth System Research Laboratory

(ESRL) [12]. This data basically shows variations in cloud reflec-

tivity over time (around 12 hours) for different cloud heights above

ground level (AGL). We consider it to be the ground truth and try to

estimate it in the presence of noise of variance σ2 = 0.25. There

are N = 425 reflectivity samples corresponding to each height. We

limit ourselves to the data of NCH = 50 levels of cloud heights.

A signal x is sensed separately per height, through the same mea-

surement matrix Φ (where each row may correspond to a sensor),

which has been drawn from a zero-mean Gaussian distribution with

variance 1/M . We have further orthogonalized the rows of the mea-

surement matrix Φ.
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Fig. 2. Comparison of SGF-LASSO, LGF-LASSO and G-LASSO
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The penalty parameters for the simulations have been consid-

ered as λe = 5, λg = 35 and λf = 10. In general, these parameters

can be selected from a given range in a cross-validation manner, by

varying one of the parameters and keeping others fixed [7]. Further,

since all of these parameters are sparsity promoting, and can possi-

bly affect each other, it is expected that the search of the optimal set

of parameters would be restricted to a smaller range. The parameters

cu and cz are positive numbers and may affect the convergence rate.

We take them as cu = cz = 2. As initial conditions, the vectors x[0],

u[0], z[0], ρ[0]
u , ρ[0]

z , ũ[0] and ρ
[0]
ũ , have all been considered as zero
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Fig. 4. Reconstruction by SGF-LASSO

0 100 200 300 400
0

5

10

15

20

25

30

35

40

45

50
 

time [× 1.5 min (approx.)]

 

H
e
ig

h
t 
[×

 6
0
0
 m

e
te

rs
 (

a
p
p
ro

x
.)

]

−40

−20

0

20

40

60

80

100

120

140

Fig. 5. Reconstruction by LGF-LASSO

vectors, respectively. Note that, a least-squares solution of x, can

also be considered as a warm-start to speed up the convergence rate.

The group size for SGF-LASSO, LGF-LASSO and G-LASSO has

been taken as 20. Therefore, the number of groups in SGF-LASSO

and G-LASSO are the same, i.e. 21 . For LGF-LASSO, an over-

lapping factor of K = 5 has been used, and therefore the number

of overlapping groups of size 20 are G̃ = 28. We use a maxi-

mum of 250 iterations for each algorithm. We have observed that

a tolerance level of 10−3 between consecutive updates is reached

much earlier than this limit, and therefore we stop the algorithm at

this stage. Figure 2 shows the reconstruction performance of SGF-

LASSO, LGF-LASSO and G-LASSO for a particular cloud height,

when the signal was sensed with a compression ratio µ = 0.5. We

can see that the performance of SGF-LASSO and LGF-LASSO is

very close to each other and both are able to recover the smooth tran-

sitions of the original signal. On the other hand, the performance of

G-LASSO deteriorates both on the front of smoothness as well as

block size. Note that in contrast to SGF-LASSO and LGF-LASSO,

λg is the only sparsity creating parameter for G-LASSO. Therefore,

we increase its value to 122.5, which is the minimum to recreate the

actual zero blocks. Also in case of SGF-LASSO, we take λg = 17.5
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Fig. 6. Reconstruction by G-LASSO

Table 1. MSE comparisons w.r.t. compression ratio

µ SGF-LASSO LGF-LASSO G-LASSO

0.1 0.4607 0.4523 0.4953
0.3 0.2589 0.2607 0.4122
0.5 0.1661 0.1607 0.3079
0.7 0.1250 0.1197 0.2576

in order to facilitate the parsimonious effect of λe. Figures 3-6 show

the reconstruction performance of SGF-LASSO, LGF-LASSO and

G-LASSO for the complete range of cloud heights. Again, we can

see that the performance of SGF-LASSO and LGF-LASSO is bet-

ter than G-LASSO and very close to the original. Table 1 shows

the performance comparison of the proposed algorithms through the

mean squared error (MSE) metric against varying compression ra-

tios, MSE
∆
= E{‖x̃ − ˆ̃x‖22/NNCH}, where x̃ is the concatenation

of NCH signals x (i.e., of all cloud heights), and average (E{.}) is

over different noise realizations. We can see that the performance

improves in general with increasing value of µ, for 0.1 ≤ µ ≤ 0.7.

Nonetheless, the difference in performance follows the previously

observed pattern. Note that the performance of LGF-LASSO can be

improved by increasing the overlapping factor but that would cause

a subsequent increase in the computational complexity.

4. CONCLUSIONS

In this paper, we have proposed two new LASSO formulations,

namely, sparse group fused LASSO and latent group fused LASSO.

The former uses element-wise sparsity, group sparsity (over disjoint

groups) and fusion penalties, whereas the latter combines the fusion

penalty with a latent group penalty. Both formulations can be used

to reconstruct smooth signals from their compressed measurements.

We also provide low-complexity solvers for the proposed formula-

tions, based on the alternating direction method of multipliers. We

compared the performance of our proposed algorithms with stan-

dard group LASSO over a smooth test signal. The simulation results

confirm the better performance of the proposed algorithms for signal

reconstruction against group LASSO. Similar results were obtained

for the mean squared error metric, for varying compression ratios.
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