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ABSTRACT

Similarity measures based on compression assess the distance
between two objects based on the number of bits needed to
describe one, given a description of the other. Theoretically,
compression-based similarity depends on the concept of Kol-
mogorov complexity, which is non-computable. The imple-
mentations require compression algorithms that are approxi-
mately normal. The approach has important advantages (no
signal features to identify and extract, for example) but the
compression method must be normal. This paper proposes
normal algorithms based on mixtures of finite context mod-
els. Normality is attained by combining two new ideas: the
use of least-recently-used caching in the context models, to
allow deeper contexts, and data interleaving, to better explore
that cache. Examples for DNA sequences are given (at the
human genome scale).

Index Terms— Normalized compression distance, finite
context models, LRU cache, interleaving, DNA sequences

1. INTRODUCTION

Measuring the similarity between two numeric signals or im-
ages or between two symbolic signals such as DNA sequences
is an important problem. For numeric signals, the simplest
approach is to fix a norm ‖ · ‖ and measure the size d of the
difference of two signals using that norm, d = ‖x − y‖. In
this context, the L2-norm is probably the one most often used.
This approach works reasonably well when, for example, one
signal is a noisy version of the other. Under more general cir-
cumstances, the direct application of a norm may yield mean-
ingless results (imagine that one signal is a scaled version of
the other, for example). Using norms in this way is of course
also out of the question for symbolic sequences (in which the
concept of “difference” is not even defined).

The ideal comparison method would give a meaningful
indication of how similar two objects are, regardless of their
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geometry, orientation, scale, alphabet and other similar char-
acteristics. A common approach is to extract a set of features
from the objects and compare them. The difficulty associated
with that approach is how to choose the set of features to ex-
tract.

There has been interest in similarity measures based on
compression methods [1–8]. They rely on Kolmogorov com-
plexity, or algorithmic entropy. The Kolmogorov complexity
of a string of bits A is the minimum size of a program that
produces A and stops. A repetitive structure can be described
by a small program (“print zero, repeat for 10,000 times”), the
size of which scales like the logarithm of the size ofA, that is,
log |A|. By contrast, for a complex pattern A there might be
no better program than “printA”, which scales with |A|, indi-
cating high complexity. The drawback of Kolmogorov com-
plexity, usually denoted byK(A), is its non-computable char-
acter, which forces the use of approximations that set only
upper bounds on the complexity.

Lossless compression algorithms provide natural ways
to approximate the Kolmogorov complexity. Given an en-
coder and the appropriate decoder, the bitstream produced
by a lossless compression algorithm determines the original
object. The number of bits required to represent the decoder
and the bitstream itself can be viewed as an estimate of the
Kolmogorov complexity of the object.

Any compression-based similarity measure (for DNA se-
quences or for any other data) is associated with a compres-
sion method. In a sense, the selection of the compression
method resembles the norm selection step in the naive method
d = ‖x − y‖. Different compression methods yield different
similarity indexes. Nevertheless, all of them can be regarded
as approximations to the Kolmogorov complexity of the ob-
ject, and all of them yield upper bounds for it.

These ideas lead to the normalized information distance

NID(A,B) =
max{K(A|B),K(B|A)}

max{K(A),K(B)}
,

where K(A|B) denotes the conditional Kolmogorov com-
plexity of A given B. This is the size of the shortest program
that prints A and halts, when it is fed the input B. The NID is
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related to the normalized compression distance [9, 10]

NCD(A,B) =
C(AB)−min{C(A), C(B)}

max{C(A), C(B)}
,

where C(A) denotes the number of bits required by the com-
pressor C to describe A, and AB denotes the concatenation
of A and B. The NCD yields a number in the interval [0, 1],
with values close to zero indicating strong similarity and val-
ues close to one strong dissimilarity. Note that

NCD(A,A) =
C(AA)− C(A)

C(A)
.

The compression method is called normal if it generates es-
sentially the same number of bits when compressing AA (the
concatenation of A with A) and when compressing A alone
(see also [7,11]). Lempel-Ziv based compressors are approx-
imately normal but do not perform well on DNA sequences
or images. On the other hand, the best performing image or
DNA compression algorithms are not normal. Under the nor-
mality assumption, NCD(A,A) should tend to zero as the size
of A increases.

The goal of this paper is to describe normal compression-
based similarity measures for DNA sequences, using com-
pressors based on mixtures of finite-context models. To
achieve normality, we implemented the finite-context models
using least-recently-used caches. This leads to very good per-
formance for DNA sequences the size of the human genome.
It is also essential to allow deeper model depths and control
memory usage. This was complemented with data interleav-
ing, to allow the compressor to take full advantage of the
cache. These ideas complement each other — one does not
work well without the other. We present results for large
DNA sequences (two human genomes).

2. MAIN IDEAS AND RATIONALE

The probabilistic models that we will use employ mixtures of
finite context models. A finite context model assigns a prob-
ability estimate to the next symbol s, given the most recent
past outcomes c1, c2, . . . , cn. The estimator is

P (X = s|c1, c2, . . . , cn) =
N(s, c1, c2, . . . , cn) + α

N(c1, c2, . . . , cn) + αk
, (1)

where N(s, c1, c2, . . . , cn) is the number of times that the
symbol s has been seen having c1, c2, . . . , cn as the condi-
tioning context,N(c1, c2, . . . , cn) is the total number of times
that the context has been seen and k is the size of the alpha-
bet. The parameter α allows balancing between the maximum
likelihood estimator and an uniform distribution. The value
α = 1 corresponds to the well-known Laplace estimator. The
impact of α is usually very small unless n, the context depth,
is large (this will be discussed later).
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Fig. 1. Top: Histogram of the distances between successive
repetitions for all strings of length 14 in the human chromos-
some 17. Middle: Same, for the human chromossome 17
concatenated with itself. Bottom: Same, for chromossome 17
interleaved with itself. Also shown are similar histograms for
random strings of the same length.

Consider a model that includes several finite context mod-
els and let the maximum depth be n. If the alphabet has size
k = 4 (as in many problems involving DNA sequences), the
deepest model alone requires a fixed size table with 4n en-
tries, indexed by the context itself. The exponential memory
required to implement very deep models renders the approach
based on fixed size tables unfeasible.

A better solution is to use hash tables. A hash table uses
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the context as the key and stores only contexts that have oc-
curred. If the sequence is short, the hash table will work well
even for very deep contexts, because only a small fraction of
the 4n possible contexts are likely to occur. Thus, the hash ta-
ble will only need to store a small fraction of the 4n possible
contexts, a feasible task.

Unfortunately, in many applications the data sequences
are not short. In bioinformatics, sequences of size above 109

are common. In that case, the hash table will slowly expand
as the sequence is read, leading to poor performance and ulti-
mately exhausting the available memory.

Since finite context models explore repetitions of pat-
terns found in the data, it is of interest to investigate how the
repetitions are distributed along the sequences. Fig. 1 (top)
shows the histogram of the distances between repetitions for
all strings of length 14 found in the human chromossome 17.
It is seen that a large fraction of the repetitions occur at com-
paratively small distances (thousands or tens of thousands
in a sequence with tens of millions of symbols). A similar
behavior was observed in many other cases.

Our observations suggest the use of least-recently-used
(LRU) caches for the context models. An LRU cache works
in a way that resembles a hash table, but has a limit on the
number of entries. When the limit is reached, the oldest item
is discarded to make room for the new item. In DNA data,
most repetitions occur at comparatively short distances. Thus,
an LRU cache can provide good probability estimates and a
hard limit on memory usage. This makes very deep contexts
accessible for experiment.

The LRU cache by itself will not lead to a normal com-
pression method. To reach that goal we need to understand
the problem in more depth.

Since our goal is to measure distances using information
theoretic tools, it is necessary to examine the distribution of
repetitions in pairs of sequences. The usual way of combining
pairs of sequences, say A and B, is to concatenate them —
see the definition of NCD(A,B). To obtain normal methods
it is necessary to keep NCD(A,A) small. This depends on the
term C(AA), and so we need to consider the concatenation of
a sequence with itself.

Fig. 1 (middle) shows the repetition histogram for chro-
mossome 17 concatenated with itself. The result, in fact,
could have been predicted: the concatenation gives rise to a
new set of repetitions which occur at a very long distance (the
length of the chromossome itself). The compression of the
concatenated sequence, and therefore the property of normal-
ity, will be difficult to achieve because a very important frac-
tion of the repeats found in the data will occur very far from
each other.

Our solution is the following: instead of combining A
and B using concatenation, we interleave them. This is still
consistent with the term K(A|B) in the NID and, as seen on
Fig. 1, it leads to a strikingly different and much more favor-
able distance distribution. Interleaving is appropriate for pro-

cessing with short-term memory. It is impossible to explore
the redundancy present in concatenated sequences unless the
encoders have very long-term memory.
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Fig. 2. Cache size impact for a mixture of models of depth
3, 7, 11 and 15, with cache limits of 6 and 10 million entries,
tested on the entire human genome (including mitochondrial
DNA). The performance is very little affected by the cache
size, due to the characteristics of the data.
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Fig. 3. Comparison of models that use only shallower (3-7-
11) or shallower and deeper contexts (3-7-11-16) on the hu-
man genome. The addition of the model of depth 16 greatly
improves performance. For deep contexts, reducing α also
improves performance. Thanks to the cached model, there is
no need to store the 416 table entries of the deeper model (in
fact, deeper models could have been used, even in portable
computers).

3. RESULTS AND CONCLUSION

Since we have decided to base the deeper models in LRU
caches, it is important to understand how the cache size im-
pacts the compression results. This, in turn, determines the
ability of the models to discriminate distances between se-
quences. We have found that for DNA data, in which most
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Fig. 4. Top: normalized compression distances obtained
using mixtures of finite context models with LRU caching
and interleaving. The curve (a) corresponds to the distances
NCD(A,A) between each chromossome and itself, and the
curve (b) to the distances between two chromossomes in two
different assemblies of the human genome. We are compar-
ing close data, but even so the distances reveal the difference.
Models used: 4, 8, 12 and 18, with α set to 1, 1, 0.05 and
0.02, respectively. Bottom: distances obtained using models
4, 8 and 12 only, without interleaving. In this case the re-
sults are meaningless. The method is far from normal, since
C(AA) is very different from C(A).

repetitions occur at short distances (as seen in Fig. 1), the
cache limit has very little impact on the performance. Cache
limits of 4 million entries or so are more than enough to ob-
tain consistent performance. Fig. 2 shows results for cache
limits of 4 and 10 million entries, respectively. It is clear that
increasing the cache size has negligible positive impact.

Our cache-based implementation renders much deeper
contexts possible, and these deeper contexts do improve
performance, as shown in Fig. 3. The importance of the pa-
rameter α of the estimator (1) grows with the model depth.
When the context depth is small, the counts in (1) are large
and dominate the numerator and denominator. For deeper
contexts, α has a noticeable impact, as Fig. 3 clearly shows.

The combination of caching, interleaving and deep con-
text models yields a compression-based distance that is al-

most normal. This is demonstrated in Fig. 4 (top), which
shows NCD(A,A) for each chromossome in the human
genome (including mitochondrial DNA). As seen, most of
the distances lie below 0.08, a value at least one order of
magnitude smaller than the values obtained in Fig. 4 (bot-
tom), i.e. without caching and interleaving. Also shown is
NCD(A,B) where A and B are the same chromossomes in
two different assemblies of the human genome. Such pairs
are still very similar, but as seen in the figure the method is
able to discriminate the differences between them clearly.

Fig. 4 (bottom) is an example of what happens when
the ideas proposed in this work are not used. First, without
LRU caches a context depth of 18 becomes unfeasible (it
would require a table size of 236). Second, without inter-
leaving, C(AA) yields significantly more bits than C(A) and
NCD(A,A) is large (typically above 0.80). Recall that the
NCD is supposed to yield a number in the range [0, 1], with
values close to 1 indicating strong unsimilarity. The result is
clearly meaningless.

To conclude, we have carefully considered the design of
normalized compression distances for DNA sequences of size
above 109. Such measures are useless unless they are normal.
This requires an underlying compressor, or statistical model,
able to represent AA using about the same number of bits
as A. We used probabilistic models based on mixtures of fi-
nite context models to explore the repetition-rich content of
DNA sequences. An analysis of the distribution of distances
between repetitions showed that most repeats lie at short dis-
tances. As a result, we implemented the finite models using
LRU caches. To circumnvent the intrinsic short range mem-
ory of the LRU cache, we approached terms such asK(X|Y )
in a new way: sequences were combined using interleaving
rather than concatenation. This lead to a normal compressor
(to within 5-7%) able to discriminate even the small differ-
ences between two different assemblies of the same genome.
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