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ABSTRACT
This paper designs and evaluates a practical algorithm, called
Prac-ReProCS, for recovering a time sequence of sparse vec-
tors St and a time sequence of dense vectors Lt from their
sum, Mt := St + Lt, when any subsequence of the Lt’s lies
in a slowly changing low-dimensional subspace. A key appli-
cation where this problem occurs is in video layering where
the goal is to separate a video sequence into a slowly chang-
ing background sequence and a sparse foreground sequence
that consists of one or more moving regions/objects. Prac-
ReProCS is the practical analog of its theoretical counterpart
that was studied in our recent work.

Index Terms— robust PCA, robust matrix completion,
sparse recovery, compressed sensing

1. INTRODUCTION

The goal of this work is to recover a time sequence of sparse
vectors St and a time sequence of dense vectors Lt from their
sum,Mt := St+Lt, when any subsequence of the Lt’s lies in
a slowly changing low-dimensional subspace. The magnitude
of the entries of Lt could be larger, roughly equal or smaller
than that of the nonzero entries of St.

The above problem can be interpreted as one of recursive
sparse recovery from potentially large but structured noise. In
this case, St is the quantity of interest and Lt is the potentially
large but structured (low-dimensional) noise. Alternatively it
can be posed as a recursive robust principal components anal-
ysis (PCA) problem. In this case Lt, or in fact, the subspace
in which the last several (d) Lt’s lie, range([Lt−d+1, . . . Lt]),
is the quantity of interest while St is the outlier.

A key application where this problem occurs is in video
layering where the goal is to separate a slowly changing back-
ground from moving foreground objects/regions (sparse im-
age) [2, 3]. The foreground layer, e.g. moving people/objects,
is of interest in applications such as automatic video surveil-
lance, tracking moving objects, or video conferencing. The
background sequence is of interest in applications such as
background editing (video editing applications). In most

Longer version of this paper is under submission to IEEE Trans. Sig.
Proc [1]. This work was supported by NSF grant CCF-1117125.

static camera videos, the background images do not change
much over time and hence the mean-subtracted background
image sequence is well modeled as lying in a fixed or slowly-
changing low-dimensional subspace of Rn [3]. Moreover the
changes are typically global, e.g. due to lighting variations,
and hence modeling it as a dense image sequence is valid too.
The foreground layer usually consists of one or more moving
objects/persons/regions that move in a correlated fashion, i.e.
it is a sparse image sequence that often changes in a correlated
fashion over time. By letting Mt be the entire image, Lt be
the background image and defining St as the the foreground-
background intensity difference on the foreground support
and zero everywhere else, video layering becomes a problem
of separating St and Lt from Mt = St + Lt.

Related Work. In the last few decades, there has been
a large amount of work on robust PCA, e.g. [2, 4, 5, 6], and
recursive robust PCA e.g. [7, 8, 9]. In most of these works,
either the locations of the missing/corruped data points are
assumed known [7] (not a practical assumption); or they first
detect the corrupted data points and then replace their values
using nearby values [8]; or weight each data point in propor-
tion to its reliability (thus soft-detecting and down-weighting
the likely outliers) [2, 9]; or just remove the entire outlier vec-
tor [5, 6].

In a series of recent works [3, 10], a new and provably
correct solution to robust PCA called Principal Components’
Pursuit (PCP) has been proposed, that does not require a two
step outlier location detection/correction process and also
does not throw out the entire vector. It redefines batch robust
PCA as a problem of separating a low rank matrix L and a
sparse matrix S from their sum M. PCP finds S and L by
solving minS,L ‖S‖1 +‖L‖∗ s.t.M = S+L where ‖.‖1 de-
notes the vector `1 norm and ‖.‖∗ denotes the nuclear norm. It
is shown that if the low-rank matrix is dense and if the sparse
matrix has support set entries that are independently selected,
then solving PCP will indeed return the correct sparse and
low-rank matrices. Other recent works that also study batch
algorithms for recovering a sparse matrix and a low-rank ma-
trix from their sum, or from undersampled measurements of
their sum, include [11, 12, 13, 14, 15, 16, 17, 18].

Notice that most applications where video layering is re-
quired, such as video surveillance, require an online solu-
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tion. A batch solution would require a long delay; and would
also be much slower than a recursive solution. Moreover, the
assumption that the foreground support is independent over
time is not usually valid. To address these issues, in [19] we
introduced a novel recursive solution approach which we later
called Recursive Projected Compressive Sensing (ReProCS)
[20]. In recent work [21, 22], we have tried to obtain perfor-
mance guarantees for ReProCS. Under mild assumptions and
an assumption on an algorithm estimate (that holds in sim-
ulations as long as there is some support change every few
frames), we showed that, with high probability, ReProCS can
exactly recover the support set of St at all times; and the re-
construction errors of both St and Lt are upper bounded by a
time invariant and small value.

Contributions. In this work, we design a practically us-
able modification of the theoretical ReProCS algorithm stud-
ied in [21, 22]. By “practically usable”, we mean that (a)
it requires much fewer parameters and we explain how to set
these parameters without any model knowledge; and (b) it ex-
ploits practically valid assumptions such as denseness of Lt’s,
slow subspace change of Lt’s, and gradual support change
of St’s. We show via extensive simulation experiments that
ReProCS is more robust to correlated support change of St

than PCP and other existing work. Also, it is also able to
recover small magnitude sparse vectors better than other ex-
isting works. The simulation experiments are shown in this
paper; the model verification and real video experiments are
shown in longer version of this paper [1].

Some later work of this topic includes [23]. Its key idea is
similar to that of the original ReProCS algorithm [19, 20].

Notation. For a set T ⊆ {1, 2, · · ·n}, we use |T | to
denote its cardinality, i.e., the number of elements in T . The
symbols ∪,∩, \ denote set union set intersection and set dif-
ference respectively. The notation [.] denotes an empty ma-
trix. We use the notationB SV D

= UΣV ′ to denote the singular
value decomposition (SVD) of B, and range(B) denotes the
subspace spanned by the columns of B.

A matrix P is a basis matrix if P ′P = I .
The notation Q = basis(range(M)), or Q = basis(M)

for short, means that Q is a basis matrix for range(M) i.e. Q
satisfies Q′Q = I and range(Q) = range(M).

The b% left singular values’ set of a matrix M is the
smallest set of indices of its singular values that contains at
least b% of the total singular values’ energy. The correspond-
ing matrix of left singular vectors, UT , is referred to as the b%
left singular vectors’ matrix.

Definition 1.1 The notation Q = approx-basis(M, b%)
means that Q is the b% left singular vectors’ matrix for
M . The notation Q = approx-basis(M, r) means that Q
contains the left singular vectors of M corresponding to its r
largest singular values.

2. PROBLEM DEFINITION AND ASSUMPTIONS

The measurement vector at time t, Mt, is an n dimensional
vector which can be decomposed as

Mt = St + Lt (1)

where St is a sparse vector and Lt is a dense but low-
dimensional vector. We use Tt to denote the support set
of St.

Suppose that an initial training sequence which does not
contain the sparse components is available, i.e. we are given
Mtrain = [Mt; 1 ≤ t ≤ ttrain] with Mt = Lt. This is used
to get an initial estimate of the subspace in which the Lt’s
lie 1. At each t > ttrain, the goal is to recursively estimate
St and Lt and the subspace in which the last several Lt’s lie.
By “recursively” we mean: use Ŝt−1, L̂t−1 and the previous
subspace estimate to estimate St and Lt.

Our algorithm is based on three assumptions that we ex-
plain next. These assumptions are verified for real video data
in [1].

2.1. Low-dimensionality and slow subspace change

One way to quantify this assumption is as follows. We let
Lt = P(t)at where P(t) is a tall matrix that is piecewise con-
stant with time, i.e. P(t) = Pj for all t ∈ [tj , tj+1) where
Pj is an n × rj basis matrix with rj � min((tj+1 − tj), n).
A very simple model for slow subspace change is to let Pj

change as

Pj = [(Pj−1Rj \ Pj,old), Pj,new]

where Pj,new and Pj,old are basis matrices of size n × cj,new
and n × cj,old respectively with P ′j,newPj−1 = 0 and Rj is a
rotation matrix. Moreover, the projection of Lt along Pj,new
is small initially for the first α frames, i.e.

‖(I−Pj−1P
′
j−1)Lt‖2 � min(‖Lt‖2, ‖St‖2) if t ∈ [tj , tj+α)

and can increase gradually after tj + α.

2.2. Denseness

We assume that the subspace spanned by the Lt’s is dense,
i.e.

κ2s(Pj) = κ2s([Ltj , . . . Ltj+1−1]) ≤ κ∗
for a κ∗ significantly smaller than one. Here

κs(B) = κs(range(B)) := max
|T |≤s

‖IT ′basis(B)‖2 (2)

is the denseness coefficient for any vector or matrix B [21,
22]. Moreover, a similar assumption holds for Pj,new with a

1If an initial sequence without St’s is not available, one can use a batch
robust PCA algorithm to get the initial subspace estimate as long as the initial
sequence satisfies its required assumptions.
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tighter bound: κ2s(Pj,new) ≤ κnew < κ∗. By [21, Lemma 2],
a small κ2s(Pj) means that the restricted isometry constant
(RIC) [24] of the matrix (I − PjP

′
j) is small. Using any of

the RIC based sparse recovery results, e.g. [25], this ensures
that for t ∈ [tj , tj+1), s-sparse vectors St are recoverable
from (I − PjP

′
j)Mt = (I − PjP

′
j)St by `1 minimization.

2.3. Support size, support change of St

We assume two things. First, we assume that either the sup-
port size is small or the support changes are slow or both.
At the same time, we also assume that there is some sup-
port change during any set of α frames. Practically, this is
needed to ensure that at least some of the background behind
the foreground is visible so that the changes to the background
subspace can be estimated. In the performance guarantees de-
rived in [21], this ensures that the currently unestimated sub-
space of range(Pj,new) is dense.

3. PRACTICAL REPROCS

The complete practical Recursive Projected Compressive
Sensing (ReProCS) algorithm is summarized in Algorithm
1. We explain its steps below. We use Ŝt, T̂t, L̂t to denote
estimates of St, its support, Tt, and Lt respectively; and we
use P̂(t) to denote the basis matrix of the estimated subspace
of the last several Lt’s (sometimes we just refer to P̂(t) as the
subspace estimate). Also, let

βt := Φ(t)Lt, where Φ(t) := (I − P̂(t−1)P̂
′
(t−1)) (3)

Given the initial training sequence which does not con-
tain the sparse components, Mtrain = [L1, L2, . . . Lttrain ]

we compute P̂0 as an approximate basis for Mtrain, i.e.
P̂0 = approx-basis(Mtrain, b%) with b% = 95%. Also
let r̂ = rank(P̂0). We need to compute an approximate basis
because for real data, the Lt’s are only approximately low-
dimensional. After this, at each time t, ReProCS involves 4
steps that we explain next.

Perpendicular Projection. At time t, we project the
measurement vector, Mt, into the space orthogonal to P̂(t−1)
to get yt := Φ(t)Mt. As we explain in the Subspace Update
step, P̂(t) is updated every α frames.

Sparse Recovery (Recover Tt and St). With the above
projection, yt can be rewritten as

yt = Φ(t)St + βt

where βt is defined in (3). As explained in [1, 21], ‖βt‖2 is
small. Briefly, if the current subspace is accurately estimated,
then this is because projecting orthogonal to range(P̂(t−1))
nullifies most of the contribution of Lt; on the other hand, if
range(Pj,new) has so far not been estimated, then this is still
true because of the slow subspace change assumption. As a

result the problem of recovering St from yt becomes a tradi-
tional sparse recovery / CS problem in small noise, βt. No-
tice that, since the n × n projection matrix, Φ(t), has rank
(n − rank(P̂(t−1))), therefore yt has only this many “effec-
tive” measurements, even though its length is n.

To recover St from yt, we solve

minx‖x‖1 s.t. ‖yt − Φ(t)x‖2 ≤ ξ (4)

and denote its solution by Ŝt,cs. By the denseness assump-
tion, the basis matrix P(t−1) is dense. Since P̂(t−1) approxi-
mates it, this is true for P̂(t−1) as well [21, Lemma 8.3]. Thus,
by [21, Lemma 2], the restricted isometry constant (RIC) of
Φ(t) is small. Using [25, Theorem 1], this and the fact that
βt is small ensures that St can be accurately recovered from
yt. By thresholding on Ŝt,cs to get an estimate of its support
followed by computing a least squares (LS) estimate of St on
the estimated support and setting it to zero everywhere else,
we can get a more accurate estimate, Ŝt. The thresholding
and LS help to reduce the bias and total reconstruction error
in the solution.

The constraint ξ used in the minimization should equal
‖βt‖2 or its upper bound. Since βt is unknown we can re-
place ‖βt‖2 by ‖β̂t‖2 where β̂t := Φ(t)L̂t−1. This will usu-
ally be smaller than the upper bound on ‖βt‖2. However
that only means that the solution of (4) may have some ex-
tra nonzero elements. With an appropriate thresholding step,
most of these should not be detected into the support.

Recover Lt. The estimate Ŝt is used to estimate Lt as
L̂t = Mt− Ŝt. Thus, if St is recovered accurately, so will Lt.

Subspace Update (Update P̂(t)). Within a short de-
lay after every subspace change time, one needs to update
the subspace estimate, P̂(t). In practice, since the subspace
change model is not known, the subspace update needs to
be done at regular short enough intervals. This is needed
to ensure that the subspace gets updated quickly enough so
that the projected noise βt seen by the sparse recovery step
never becomes too large. At the same time, to get an accu-
rate subspace estimate using simple PCA, one needs to use d
frames for a d that is large enough compared to rj . To satisfy
both requirements, we use overlapping periods for subspace
estimation: every α frames, we do a subspace update using
the previous d estimates L̂t with a d � α. To be precise
at every t = ttrain + kα, k = 1, 2, . . . , we compute P̂(t) =

approx-basis([L̂t−d+1, . . . L̂t], r̂) where r̂ = rank(P̂0). The
choice of α is governed by computational complexity. In the
experiments shown, we used d = 10r̂ and α = 50.

The subspace update step can be made recursive as ex-
plained in [1]. Alternatively, one can use projection PCA
introduced in [21] (practical version explained in [1]). Ex-
periments using these are shown in [1].

Improved Sparse Recovery. Whenever slow support
change holds, one can replace `1 minimization by modified-
CS [26] or its generalization called weighted `1 [27, 28].
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Algorithm 1 Practical ReProCS

Input: Mt; Output: Tt, Ŝt, L̂t; Parameters: b, d, α.
The algorithm uses Definition 3.1.
Initialization: Compute P̂0 ←
approx-basis([M1, . . .Mttrain ], b%) with b = 95. Set
r̂ ← rank(P̂0), d← 10r̂, α← 50; P̂ttrain ← P̂0 and T̂t ← [.].
For t > ttrain do

1. Perpendicular Projection

(a) yt ← Φ(t)Mt, Φ(t) ← I − P̂t−1P̂
′
(t−1)

2. Sparse Recovery (Recover St and Tt)
If |T̂t−2∩T̂t−1|

|T̂t−2|
< 0.5

(a) Compute Ŝt,cs by solving simple `1, i.e. (4) with
ξ = ‖Φ(t)L̂t−1‖2.

(b) T̂t ← Thresh(Ŝt,cs, ω) with ω =
√
‖Mt‖2/n

Else

(a) Compute Ŝt,cs by solving weighted-`1

minxλ‖xT̂t−1
‖1+‖xT̂ c

t−1
‖1 s.t. ‖yt−Φ(t)x‖2 ≤ ξ

with λ = |T̂t−2\T̂t−1|
|T̂t−1|

and ξ = ‖Φ(t)L̂t−1‖2.

(b) T̂add ← Prune(Ŝt,cs, 1.4|T̂t−1|).

(c) Ŝt,add ← LS(yt,Φ(t), T̂add)

(d) T̂t ← Thresh(Ŝt,add, ω) with ω =
√
‖Mt‖2/n

Set Ŝt ← LS(yt,Φ(t), T̂t)

3. Estimate Lt: L̂t ←Mt − Ŝt

4. Update P̂(t): If t = ttrain + kα, k = 1, 2, . . .

(a) P̂(t) ← approx-basis([L̂t−d+1, . . . L̂t], r̂)

Else P̂(t) ← P̂(t−1)

These require fewer measurements for exact/accurate recov-
ery when the previous support estimate, T̂t−1, is an accurate
enough estimate of the current support, Tt. Moreover, support
estimation can be improved by using an approach similar to
the Add-LS-Del procedure [29].

We summarize the complete algorithm including the
above step and heuristics to set its parameters in Algorithm 1.

Definition 3.1 In the algorithm,

1. T ← Thresh(x, ω) means T = {i : |(x)i| ≥ ω}

2. T ← Prune(x, s) means T contains the s largest mag-
nitude elements of x
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Fig. 1: NMSE for recovering St (t = 0 refers to t = ttrain)

3. x̂← LS(y,A, T ) means

x̂T = (AT )†y = (AT
′AT )−1AT

′y, x̂T c = 0.

4. PARTLY SIMULATED EXPERIMENTS

We used a real slowly changing background sequence and
overlaid a simulated foreground sequence consisting of a
moving rectangular object on it. The use of a real background
sequence allows us to evaluate performance for data that
only approximately satisfies the low-dimensional and slow
subspace change assumptions. The use of the simulated fore-
ground allows us to control its intensity so that the resulting
St is small or of the same order as Lt (making it a difficult se-
quence). We controlled the foreground intensity so that ‖St‖2
was roughly equal or smaller than ‖Lt‖2 making it a difficult
sequence. Moreover it provides ground truth data so that the
recovery performance can be quantitatively compared.

The background was a video of moving waters in a lake
(see [1]). The moving object was simulated as explained in
[1]. We generated 50 realizations of the video sequence and
compared all the algorithms to estimate St, Lt and then the
foreground and the background sequences. We show com-
parisons of the normalized mean squared error (NMSE) in
recovering St in Fig. 1. As can be seen, the ReProCS error is
the smallest and stable. PCP gives very large error for this se-
quence since the object moves in a highly correlated fashion
and occupies a large part of the image. GRASTA [23] also
does not work and we think it is because the GRASTA code
does not update the background subspace. Robust Subspace
Learning (RSL) [2] is able to recover a large part of the ob-
ject correctly, however it also recovers many more extras than
ReProCS. The reason is that the magnitude of the nonzero
entries of St is equal or small compared to those of Lt.

Real video experiments are available in [1] and http://
www.ece.iastate.edu/˜hanguo/PracReProCS.
html.
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