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ABSTRACT

The fused lasso problem involves the minimization of the sum of a

quadratic, a TV term and an ℓ1 term. The solution can be obtained by

applying a TV denoising filter followed by soft-thresholding. How-

ever, soft-thresholding introduces a certain bias to the non-zero co-

efficients. In order to prevent this bias, we propose to replace the ℓ1
penalty with a non-convex penalty. We show that the solution can

similarly be obtained by applying a modified thresholding function

to the result of the TV-denoising filter.

Index Terms— Fused lasso, non-convex penalty, thresholding,

total variation denoising, audio denoising.

1. INTRODUCTION

Suppose x is a piecewise constant signal, many samples of which

are also known to be zero. Given a noisy observation of x, namely

y, the fused lasso formulation [12] proposes to reconstruct x as

x̂ = argmin
x

1

2
‖y − x‖22 + λ1 TV(x) + λ2 ‖x‖1, (1)

where TV(x) denotes the total variation of x, ‖x‖1 denotes the ℓ1
norm of x, defined as,

TV(x) =

N−1
∑

i=1

|xi − xi+1|, ‖x‖1 =

N
∑

i=1

|xi|, (2)

for x ∈ R
N . Friedman et al. show in [7] that the solution to this

problem can be obtained in two steps.

(i) Set ẑ = argminz
1

2
‖y − z‖22 + λ1 TV(z),

(ii) x̂ = STλ2
(ẑ, λ2), where STλ2

(·) denotes the soft-thresholding

operator with threshold λ2.

Existence of finite-terminating algorithms (see e.g. [9, 5, 4, 1]) for

the TV denoising problem renders this procedure attractive from a

computational point of view.

One objection to the formulation in (1), also made explicit by

the two step procedure above, is the use of the ℓ1 norm as a sparsity

inducing prior (or the soft-threshold as a sparsity inducing opera-

tor). The problem is that, although the low-magnitude coefficients

are thresholded to zero, in line with the sparsity requirement, the

remaining non-zero estimates are biased because of the shrinkage

towards zero. In sparse denoising/reconstruction applications, this

last feature has been addressed by employing non-convex penalty

functions (see e.g. [11, 6]). An example of such a penalty function

is shown in Fig. 1a. Here, the non-convex function, referred to as
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(a) The ℓ1 and log (non-convex) penalty functions
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Fig. 1: (a) The absolute value function (ℓ1 penalty) and the log penalty as
an instance of a non-convex penalty. (b) The denoising, or thresholding op-
erators that solve a denoising problem when the functions in (a) are used as
regularizers. Note that the bias of the log-threshold decreases with increasing
values of the input.

the log-penalty is φ(z) = ln(1 + |z|). This penalty function has a

discontinuity in its derivative, like the absolute value function, at the

origin. However, it penalizes high values of |x| less than the abso-

lute value function. The ‘threshold function’ associated with φ(z) is

denoted by T (·) and is defined so that x̂ = T (z) for

x̂ = argmin
x

1

2
(z − x)2 + φ(x). (3)

The threshold function as defined above is also referred to as the

‘proximity operator’ of φ [3]1. In contrast to the soft threshold

function, this threshold function converges to the identity asymp-

totically. This in turn ensures that high-valued estimates obtained

by this threshold function are less biased, compared to the estimates

given by the soft-threshold.

In view of the forgoing discussion, we propose to replace the

ℓ1 term in the fused lasso cost function in (1) with a coordinate-

1Actually, the definition in [3] requires that φ be lower semi-continuous,
convex. We use the term rather formally here.
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wise non-convex penalty φ as above. More precisely, we propose to

estimate x as,

x̂ = argmin
x

1

2
‖y − x‖22 + λ1 TV(x) + λ2

N
∑

i=1

φ(xi). (4)

Although this replacement is motivated from a theoretical point of

view, the two step procedure (TV denoise + soft threshold) could

still be a reason to favor the ℓ1 penalty, from a computational point

of view. A natural question is then, whether a similar two step pro-

cedure exists for non-convex penalties as well. That is, if we first

TV-denoise and then apply to the result the threshold function asso-

ciated with φ, do we obtain the same result as x̂ in (4)? We show in

this paper that this is indeed the case under certain conditions. The

two step procedure outlined above for the ℓ1-penalty/soft-threshold

pair also applies for φ and its threshold function (proximity operator)

T , under mild assumptions on φ.

Outline

In Section 2 we show that the two step procedure above extends to

non-convex penalties under some conditions. Experiments demon-

strating the utility of the proposed formulation are given in Section 3.

Section 4 contains some concluding remarks.

2. EXTENSION TO COMPONENTWISE MONOTONE

DENOISING OPERATORS

In this section, we show that the two step procedure, consisting of

TV denoising followed by soft thresholding can be modified to han-

dle cases where the ℓ1 penalty is replaced by a nonconvex penalty

term. More precisely, we consider the problem in (4). Let the TV-

denoised input be denoted as ẑ, that is

ẑ = argmin
z

1

2
‖y − z‖22 + λ1 TV(z) (5)

Suppose now we apply to ẑ the threshold function associated with

λφ(·), that is,

x̃ = argmin
x

1

2
‖ẑ − x‖22 + λ2

∑

i

φ(xi) (6)

In this setting, we have the following result.

Proposition 1. If φ : R → R is a function and λ2 ∈ R is a constant

such that

α

2
z
2 + λ2 φ(z) (7)

is convex for some 0 < α < 1, then, x̃ in (6) and x̂ in (4) are

equal.

In the rest of this section, we provide a proof of this result. For

this, we need a few definitions from convex analysis. We refer to

[8, 10] for a more detailed account.

2.1. Preliminaries

Definition 1. The subdifferential of a convex function f : Rn → R,

is a set-valued map, denoted by ∂f , and is defined for x ∈ R
n as,

∂f(x) = {t ∈ R
n : f(z) ≥ f(x)+ 〈t, z−x〉, ∀z ∈ R

n}. (8)

We note that for differentiable f , the subdifferential ∂f is in 1-1

correspondence with the usual derivative or gradient. For f(x) =
‖x‖1, ∂f(x) consists of vectors u such that,

ui ∈











{−1}, if xi < 0,

[−1, 1], if xi = 0,

{1}, if xi > 0.

(9)

Proposition 2. If f and g are convex functions, then ∂(f + g) =
∂f + ∂g.

Proposition 3. A point x ∈ R
n minimizes f if and only if

‘0 ∈ ∂f(x)’.

Definition 2. A set valued mapping T (·) defined on R
n is said to be

monotone if

〈x− y, u− v〉 ≥ 0 (10)

for all x, y in R
n and u ∈ T (x), v ∈ T (y).

For n = 1, the monotonicity of the operator implies that if x <

y and u ∈ T (x), v ∈ T (y), then the inequality u ≤ v holds.

Proposition 4. Suppose f : Rn → R is a lower semi-continuous,

convex function. Also, let Tβ denote the operator defined as,

Tβ(y) = argmin
z

β

2
‖y − z‖22 + f(z). (11)

Then, for β > 0, Tβ is a (single-valued) monotone operator.

We note that the operator defined in Prop. 4 is also known as the

proximity operator of f [3].

2.2. Proof of Proposition 1

As required by the hypothesis of Prop. 4, suppose now that φ : R →
R is a penalty function such that

α

2
z
2 + λ2 φ(z) (12)

is convex for some 0 < α < 1. In that case,

F (x) =
1

2
‖x‖22 + λ2

∑

i

φ(xi) (13)

will be strictly convex. This in turn implies that the cost function

in (4) is strictly convex (and guarantees the existence of a unique

minimum). Moreover, by Prop. 4, the operator which maps y ∈ R

to ẑ ∈ R through

ẑ = argmin
z

1

2
(y − z)2 + λ2 φ(z) (14)

is single-valued and monotone. Suppose now that for y ∈ R
n, we

define an operator as,

T (y) = argmin
t

∑

i

(

1

2
(yi − ti)

2 + λ2 φ(ti)

)

. (15)

Note that from (5), (6), we have that x̃ = T (ẑ). Thanks to the

separability of the problem and the componentwise monotonicity of

T , we obtain,

Lemma 1. Suppose x = T (t) for some t. In that case,
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(i) if xi < xi+1 then ti < ti+1,

(ii) if xi > xi+1 then ti > ti+1.

In words, the output of the threshold function,

(i) increases only if its input increases,

(ii) decreases only if its input decreases.

Consequently,

∂
(

‖ · ‖1
)∣

∣

Dx
⊃ ∂

(

‖ · ‖1
)∣

∣

D t
, (16)

where D is the (N − 1)×N matrix defined as,

D =











1 −1 0 . . . 0
0 1 −1 . . . 0

. . .

0 . . . 0 1 −1











. (17)

(That is, the subdifferential of ‖ · ‖1 evaluated at ‘D t’ is a subset of

the subdifferential of ‖ · ‖1 evaluated at ‘Dx’.)

Proof. Parts (i) and (ii) follow directly from the preceding discus-

sion. Now let d = Dx, e = D t. Parts (i), (ii), imply that if di is

non-zero then ei is non-zero and both share the same sign. By (9)

then, if u ∈ ∂
(

‖ · ‖1
)∣

∣

Dx
we also have u ∈ ∂

(

‖ · ‖1
)∣

∣

D t
.

Let us now turn to (5). By Props. 2, 3 and (9), we have in this

case,

0 = ẑ − y + λ1 D
T
u (18)

for some u ∈ ∂
(

‖ · ‖1
)∣

∣

D ẑ
.

Similarly, by (6), we can write

0 = x̃− ẑ + λ2 v (19)

for some v ∈ ∂
(
∑

i
Φ(·)

)∣

∣

x̃
, where Φ(x) =

∑

i
φ(xi).

Adding (18) and (19), and recalling that ∂
(

‖ · ‖1
)∣

∣

D x̃
⊃

∂
(

‖ · ‖1
)∣

∣

D ẑ
, which follows by Lemma 1, we obtain

0 = x̃− y + λ1 D
T
u+ λ2 v (20)

for some u ∈ ∂
(

‖ · ‖1
)∣

∣

D x̃
and v ∈ ∂

(
∑

i
Φ(·)

)∣

∣

x̃
. In words, x̃

minimizes (4). Since F (x) in (13) and hence the cost in (4) is strictly

convex, x̃ is actually the unique minimizer of (4).

2.3. The Condition on φ

Note that the condition on φ in Prop. 1 restricts the family of non-

convex penalties to which this result applies. For instance, φ(x) =
√

|x| violates this condition, independently of λ2. Nevertheless,

there are useful and interesting candidates in the set of allowed func-

tions. Two examples, for λ2 ≤ 1 are,

φ1(x) = ln(1 + |x|), (21)

φ2(x) =
2√
3

(

atan

(

1 + 2|x|
3

))

, (22)

which have been previously used in [11]. Both of these functions

are non-convex and symmetric. They both have a singularity at the

origin, which leads to the dead zone in the associated threshold func-

tion. Also, on the positive part of the real line, their derivative mono-

tonely decreases, which in turn leads to convergence of the threshold

function to the identity asymptotically. A curious difference is that

(a) The Clean and The Observed Signals
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Fig. 2: (a) Clean piece-wise constant, sparse signal and the observed noisy
signal, (b,c) Reconstruction with the fused lasso and the non-convex fused
lasso using different regularization parameters.

φ1(x) increases without bound whereas φ2(x) is bounded. This in

turn leads to a threshold function for φ2(x) that converges to the

identity faster than the threshold function of φ1(x). However, the

threshold function for φ1(x) has a closed form expression, but that

is not the case for the threshold function of φ2(x) [11].

The condition in Prop. 1 allows non-symmetric non-convex

functions to be used as penalty functions. Such choices could be of

interest if positive values are more probable than negative values, for

instance. Other than this, the function may have more than one dis-

continuity in its first derivative, as in the SCAD function, proposed

by Fan and Li [6].

3. EXPERIMENTS

Experiment 1. In the Introduction, we noted that the soft threshold

causes the high-magnitude estimates to be biased towards zero, and

one way to avoid this bias is to employ non-convex penalties instead

of the ℓ1 penalty. In order to test this claim, we conducted an exper-

iment. The clean signal x which is piece-wise constant and sparse is

shown in Fig. 2a. We add Gaussian noise to this signal to obtain the

noisy observation with an SNR of 15dB. As the non-convex penalty,

we use the function (recall (21))

φ(x) = a
−1 ln

(

1 + a|x|
)

(23)

with a = 2. The threshold function associated with this function is

given by [11],
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Tλ(y) =







[

|y|
2

− 1

2a
+

√

( |y|
2

+ 1

2a

)2 − λ
a

]

sgn(y), |y| ≥ λ,

0, |y| < λ.

We experimented with different choices of the regularization pa-

rameters. These choices are (λ1, λ2) = (σ, 2σ), and (λ1, λ2) =
(2σ, σ), where σ is the standard deviation of the noise.

The estimates obtained by solving the fused lasso problem in (1)

and the proposed modified problem in (4) are shown in Fig. 2b for

(λ1, λ2) = (σ, 2σ). We observe that the estimate with the ℓ1 penalty

is biased towards zero, whereas the bias is seen to be reduced for the

non-convex penalty. This is expected, since the threshold function

for the non-convex penalty is indeed closer to the identity as the

magnitude of the inputs increase. In addition, we can see that the

difference in bias between the two methods increases as the mag-

nitude of the signals increase. For high values, the soft-threshold

introduces a clear bias, which is prevented significantly by employ-

ing the non-convex penalty.

The estimates with (λ1, λ2) = (2σ, σ) are shown in Fig. 2c. Es-

pecially for the nonconvex penalty, we see that the constant pieces

are estimated with a low bias. However, the estimate of the isolated

component is rather poor, primarily because TV denoising pulls this

value towards zero. In fact, this effect could be reduced by em-

ploying a non-convex penalty on the differences of the neighboring

coefficients, instead of the regular total variation as used in this pa-

per, which computes the ℓ1 norm of these differences. Although the

resulting problem can be shown to be convex, as in the modification

proposed in this paper, the simple two step procedure does not ex-

tend to that case – an iterative algorithm is necessary to solve such a

problem.

Experiment 2. In a second experiment, we employ the fused lasso

for audio denoising. The spectrogram of the noisy signal is shown

in Fig. 3a. Given this spectrogram, with an SNR of 5 dB, we ap-

plied fused lasso denoising on the magnitudes of each subband using

(λ1, λ2) = (σ, σ). The resulting modified spectrogram magnitude is

shown in Fig. 3b. To obtain the time-domain signal, we added back

the noisy phase as is usual in audio denoising [2]. The resulting SNR

is 9.24 dB. Then we replaced the ℓ1 penalty with the non-convex

penalty ‘λ2 ln(1 + λ−1

2 |x|)’ (see Experiment 1 for the associated

threshold/proximity operator) and repeated the same procedure. The

resulting spectrogram is shown in Fig. 3c. Although the two spec-

trograms look very similar, the resulting SNR is 11.13 dB, about two

decibels higher than that obtained by the regular fused lasso. This is

because the ℓ1 penalty suppresses the magnitudes of harmonics, just

as in the previous experiment, which is not easy to observe directly

from the spectrograms. However, a close look reveals that there is a

change in the gray levels. To make this more apparent, we show in

Fig. 3d the ratios of the two denoised spectrograms (the one obtained

with the modified formulation being on the numerator). Note that, if

the two spectrograms were the same, the ratio would be unity (and

the figure black). However, the suppression of the ℓ1 fused lasso

is such that the ratio is below -1 dB for most of the time-frequency

plane, hence the difference in the resulting SNRs.

4. CONCLUSION

The fused lasso penalty consists of the sum of a TV term and an ℓ1
penalty. Although the ℓ1 penalty leads to sparse estimates, it intro-

duces bias for the non-zero coefficients. This bias can be reduced

by replacing the ℓ1 penalty with a non-convex penalty. We show in
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(b) Denoised with the ℓ1 Fused Lasso, SNR = 9.24 dB
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(c) Denoised with the Modifed Fused Lasso, SNR = 11.13 dB
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(d) Ratio of the Spectrograms in (c) and (b)
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Fig. 3: Spectrograms from Experiment 2. (a) Observed noisy spectrogram.
Spectrogram denoised with the fused lasso, using (b) the ℓ1 penalty, (c) the
non-convex ‘log’-penalty. (d) the ratio of the two spectrograms in (c) and
(b).

this case that the resulting cost function for the denoising case can

be solved with fast, finite-terminating algorithms, as is the case for

the original fused lasso.

The TV penalty may be regarded as the ℓ1 norm of the derivative

of the input. Due to the existence of the ℓ1 norm also in the TV term,

we could similarly argue in favor of modifying the definition of TV
so as to reduce the bias of the non-zero piecewise constant segments.

However, in that case, the two step procedure that leads to a finite-

terminating denoising scheme does not apply. Nevertheless, it would

be of interest to employ such a penalty in more general problems that

require iterative solutions.
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