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ABSTRACT
A fast algorithm to solve weighted �1-minimization problems
with N × N square “measuring” matrices is proposed. The
method is recursive-in-model-order and tracks a homotopy
path that goes through solutions of the optimization sub-tasks
in the order of 1 through N . It thus yields solutions for all
model orders and performs this task faster than the other com-
pared methods. We show applications of this method in sparse
linear system identification, in particular, the estimation of
sparse target-cancellation filters for audio source separation.

Index Terms— Sparse Linear Regression, Homotopy, �1
norm, System Identification, Levinson-Durbin Algorithm

1. INTRODUCTION

Recently, optimization problems leading to sparse solutions
have opened new directions in signal processing fields, e.g., in
linear regression models, compressive sensing, channel iden-
tification and equalization, and so forth. Classical quadratic
criteria are modified by adding regularization terms or con-
straints. The typical term is the �1 norm or the weighted �1
norm or, most recently, also mixed norms such as �1,2 or �1,∞
norm. These norms induce sparsity of the solution and en-
sure that the implied optimization problem remains convex
and could be resolved in polynomial time.

A popular convex optimization program is the (weighted)
Lasso given by [1, 2]

min
x∈RN

1

2
‖Ax− y‖22 + ‖Wx‖1 (1)

where A = (aij) is an M × N “measuring” matrix, y =
[y1, . . . , yM ]T , and W = diag(w1, . . . , wN ) is a diagonal
weighting matrix with positive weights w1, . . . , wN on its di-
agonal. An equivalent problem, in the sense that the sets of
solutions are the same for all the possible choices of parame-
ters w1, . . . , wN and σ, is [3]

min
x∈RN

‖Wx‖1 w.r.t. ‖Ax− y‖22 ≤ σ. (2)

0This work was supported by the Czech Science Foundation through
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Motivated by channel identification problems, we address (1)
where A is square (M = N ) and, for simplicity, symmetric
(note that non-symmetric A could also be considered).

Numerous methods have been proposed to solve Lasso
and related programs; see, for instance, [4, 5]. Homotopy
algorithms [6, 7, 8] solve Lasso by tracing the entire so-
lution path for a range of decreasing values of parameters
(w1, . . . , wN ), starting from the zero solution. They take
advantage of the fact that the path is piecewise linear. These
approaches are handiest in cases where the solution is known
for certain values of parameters that are “close” to parameters
of the problem we need to solve. For example, they could
be used in adaptive algorithms where the solution must be
sequentially updated according to new data [9, 10, 11, 12].

In this paper, we derive a novel homotopy algorithm to
find solutions of all reduced-order programs

min
x∈Rn

1

2
‖Anx− yn‖22 + ‖Wnx‖1, (3)

that is, for n = 1, . . . , N , where An denotes the n×n upper-
left corner submatrix of A, yn = [y1, . . . , yn]

T , and Wn =
diag(w1, . . . , wn). The algorithm tracks the homotopy path
that goes through the solutions of (3). It might be viewed
as an analogy to the famous Levinson-Durbin recursive algo-
rithm [13], designed to solve the purely quadratic case (W =
0) where A is a square symmetric Toeplitz matrix, and the
problem falls back on finding solutions of Anx = yn, n =
1, . . . , N .

2. HOMOTOPY RECURSION

The solution of (3), from now on denoted by xn, satisfies the
following optimality conditions [8]:

(ani )
T (Anxn − yn) = −wizi, i ∈ Γn, (4)

|(ani )T (Anxn − yn)| < wi, i ∈ Γc
n, (5)

where ani is the ith column of An, zi is the sign of (xn)i, Γn

is the set of indices of nonzero elements of xn (the active set),
and Γc

n its complement to {1, . . . , n}.
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The algorithm begins by finding the solution for n = 1.
Then, assuming that xn−1 is known, xn is sought by consid-
ering a parameterized extended program

min
x∈Rn

1

2
‖Anx− yn(ω)‖22 + ‖Wn(λ)x‖1 (6)

where

An =

(
An−1 a
aT ann

)
, yn(ω) =

(
yn−1

ω

)
(7)

Wn(λ) = diag(w1, . . . , wn−1, λ), and a = (a1n, . . . ,
an−1,n)

T .
Using (4) and (5), it can be shown that [(xn−1)T 0]T is the

solution of (6) when ω = aTxn−1 and λ is sufficiently large.
At this stage, we do not need to know the exact value of λ;
its existence follows from (5). The proposed algorithm goes
through two homotopy paths to compute xn that corresponds
to the solution of (6) for ω = yn and λ = wn.

2.1. Homotopy path 1

The first homotopy path tracks the solutions when ω changes
linearly from aTxn−1 to yn while λ remains fixed. We define
ω dependent on ε as

ωε = (1− ε)aTxn−1 + εyn (8)

where ε ∈ [0, 1]. Let x∗(ε) be the solution of (6) for ω = ωε,
and Γε denote its active set. We note that n ∈ Γc

ε for every
ε. This path begins with ε = 0 and starts from x∗(0) =
[(xn−1)T 0]T .

In one homotopy step, we increase ε by δ ∈ [0, 1− ε] and
change x∗(ε) by δΔx as long as the optimality conditions are
satisfied. From (4) it follows that Δx must satisfy

(ani )
T (An(x∗(ε) + δΔx)− yn(ωε+δ)) = −wizi (9)

for i ∈ Γε. Using the fact that (9) holds for δ = 0, after some
simplifications we arrive at

(Δx)Γε = −(ω0 − ω1)
[
(An

Γε
)TAn

Γε

]−1

aΓε (10)

where the subscript (·)Γε denotes the restriction to indices
(columns in case of a matrix) in the set Γε.

The solution x∗(ε) can be changed by δΔx until at least
one of conditions (4) or (5) is violated, which corresponds
to changes in Γε. The condition (9) is violated when the ith
element of x∗(ε)+δΔx shrinks to zero for some i ∈ Γε. This
means that the element leaves the active set. By contrast, an
element from Γc

ε enters the active set when the corresponding
inequality in (5) turns to equality.

The maximum step without changes in the active set is
thus equal to δ∗ = min{δ+, δ−, 1− ε}, where

δ+ = min
i∈Γc

ε

(
wi − bi

ci
,−wi + bi

ci

)
+

(11)

δ− = min
i∈Γε

(−(x∗(ε))i
(Δx)i

)
+

(12)

where min(·)+ means that the minimum is taken over only
positive values, and bi and ci denote, respectively, the ith ele-
ment of vectors

b = (An)T (Anx∗(ε)− yn(ωε)) (13)

c = (An)T
(
AnΔx−

[
0

aTΓε
ΔxΓε

+ ω0 − ω1

])
. (14)

Now we arrive at a new solution x∗(ε+δ∗) = x∗(ε)+δ∗Δx.
The first homotopy path reaches its end if δ∗ = 1− ε. Other-
wise, the active set Γε+δ∗ is obtained by an element adding to
or removing it from Γε as described above, and the homotopy
step is repeated starting with ε ← ε+ δ∗. We denote the final
solution x∗(1) by x̃n.

2.2. Homotopy path 2

Now we can verify whether x̃n is already the desired solution
xn. Since the last element of x̃n is not contained in the active
set (x̃n

n = 0), it satisfies the condition following from (5)

|(ann)T (Anx̃n − yn) | < λ. (15)

If this condition is satisfied for λ = wn, x̃n is already equal
to xn. Otherwise, we have to start the second homotopy path
that tracks the solutions when λ changes to wn.

The path begins at the point where condition (15) becomes
violated, that is,

λini = |(ann)T (Anx̃n − yn) |, (16)

and the index n enters the active set. We again parameterize
the path via ε ∈ [0, 1]. The weight changes according to

λε = (1− ε)λini + εwn. (17)

The initial optimum for ε = 0 is x∗(0) = x̃n.
Further derivations are analogous to those carried out in

the previous subsection. The homotopy update is

(Δx)Γε = −κ(λ0 − λ1)
[
(An

Γε
)TAn

Γε

]−1

e (18)

where κ = sign[(ann)
T (Anx̃n − yn)], that is the sign of

left-hand side in (16), and e = (0, . . . , 0, 1)T of size |Γε| × 1.
The optimum is updated as x∗(ε+δ∗) = x∗(ε)+δ∗Δx where
δ∗ = min{δ+, δ−, 1 − ε}. δ+ and δ− are defined as in (11)
and (12), respectively, but instead of (13) and (14) the vectors
b and c are defined as

b = (An)T (Anx∗(ε)− yn), (19)

c = (An)TAnΔx. (20)

2.3. Solution for n = 1

There are three potential candidates for being the solution x1.
Namely, (a11y1 + w1)/a

2
11, (a11y1 − w1)/a

2
11 and 0. The

minimum is established by evaluating the objective function
in (1) for these three values. The proposed algorithm is sum-
marized in Algorithm 1.
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Algorithm 1: Pseudocode of the proposed algorithm
Input: A, y, W
Output: x1, . . . ,xN

n = 1;
Compute x1 as described in Subsection 2.3;
for n = 2, . . . , N do

a = [an1, . . . , an,n−1]T , ε = 0, x∗(0) = [(xn−1)T 0]T ,
Γε = Γn−1;
while ε < 1 do /* homotopy path 1 */

Compute Δx according to (10) and δ∗ using (11)-(14);
x∗(ε+ δ∗) = x∗(ε) + δ∗Δx, update Γε+δ∗ ;
ε = ε+ δ∗;

end
x̃n = x∗(1);
if |(an

n)
T (Anx̃n − yn) | < wn then

xn = x̃n;
else

ε = 0, x∗(0) = x̃n, add n to the active set Γε;
while ε < 1 do /* homotopy path 2 */

Compute Δx according to (18) and δ∗ using (11),
(12), (19), and (20);
x∗(ε+ δ∗) = x∗(ε) + δ∗Δx, update Γε+δ∗ ;
ε = ε+ δ∗;

end
xn = x∗(1);

end
end

3. EXPERIMENTS

3.1. Sparse channel recovery

In this experiment, we consider the estimation of a sparse
relative impulse response between two sensors. Signals ob-
served by the sensors will be denoted by u and v. Their rela-
tionship is such that v = g ∗ u + f , where g is the impulse
response to be estimated, ∗ denotes the convolution, and f is
a noise signal. Let the length of g be L, and the number of its
nonzero coefficients be S. The coefficients are randomly (uni-
formly) distributed within g, and their values are generated
from N (0, 1). Q samples u1, . . . , uQ and f1, . . . , fQ of u and
f are, respectively, generated from N (0, 1) and N (0, σ2

f ).
The minimum squared error (MSE) estimate of g, denoted

by hL′
, is defined as the minimizer of ‖Uh − v‖22, where

L′ is the length of h, U is the (Q + L′ − 1) × L′ Toeplitz
matrix whose first row and first column are [u1, 0, . . . , 0] and
[u1, . . . , uQ, 0, . . . , 0]

T , respectively, and v is the vector of
length Q + L′ − 1 containing the samples of v. Then, hL′

is
the solution of Rh = p and can be interpreted as the solution
of

min
h∈RL′

‖Rh− p‖22 (21)

where R = UTU/Q and p = UTy/Q. Note that R is an
L′ × L′ symmetric Toeplitz matrix, so hL′

can be computed
using the Levinson-Durbin algorithm for L′ = 1, 2, . . .

Now we consider sparse estimators of g obtained through
solving (1) and (2) where A = R and y = p. To com-
pare, the solutions of (1) are computed using the proposed
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Fig. 1. The random sparse impulse response.

algorithm, from this point forward denoted as ALG, and the
homotopy approach HOM1 from [8], and (2) is solved using
the root-finding algorithm SPGL12 from [5].

Two weighting matrices W1 and W2 are considered. The
weights in W1 are all equal to τ . The same holds for W2 but
those weights whose indices correspond to nonzero elements
in g are equal to τ/100. W2 thus incorporates our a priori
knowledge of the support of g. The compared methods using
W2 will be denoted as ALGw, HOMw, and SPGL1w. In
SPGL1, we use τ = 1 and σ = 0.075

√
L′.

Fig. 2 shows results of one run of the experiment where
N = 1000, L = 512, S = 50, τ = 0.2, σ2

f is selected so that
the signal-to-noise ratio in v is 10 dB, and L′ = 1, . . . , L.
The generated g is shown in Fig. 1. Two signal-to-error ratio
(SER) criteria depending on L′ are used for the evaluation:

SERL′ =
‖gL′‖2

‖gL′ − xL′‖2 and SER =
‖gL‖2

‖gL − xL′,0‖2 ,

where gn = [g1, . . . , gn]
T , xn is the solution for L′ = n, and

xL′,0 is xL′
padded with zeros to a total length of L elements.

The value of SER expresses how closely xL′
approaches gL.

Similarly, SERL′ evaluates the proximity of xL′
to the trun-

cated version of gL, i.e., gL′
.

Both SER and SERL′ in Fig. 2 show that the sparse esti-
mators yield better estimates than MSE. The weighting W2

gives better results than W1 both by ALGw and SPGL1w, be-
cause the weighting tells the estimator which elements should
be nonzero. The solutions reached by SPGL1 and SPGL1w
are similar to those of ALG and ALGw, respectively, in terms
of SER but slightly different in terms of SERL′ . (We select
σ such that the methods yield approximately the same results
for L′ = L.)

To compare the computational complexity of these meth-
ods, Table 1 shows the average number of iterations (homo-
topy steps in the cases of ALG and HOM) and an average
computational time in Matlab to compute the estimates xL′

,
for all L′ = 1, . . . , L, when S = 20, 50, 100, and 200. The
results are averaged over 100 independent runs for each S.
We use up-to-date Matlab implementations of the compared
methods on a PC with an i7 2.7GHz processor. The imple-
mentations of ALG and HOM use the matrix inversion lemma
to speed up the computations of the homotopy step direction

1http://users.ece.gatech.edu/∼sasif/homotopy/
2http://www.cs.ubc.ca/∼mpf/spgl1
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Fig. 2. Comparison of SER and SERL′ for the recovery of the
sparse impulse response in Fig. 1.

Number of nonzero coefficients in g
S=20 S=50 S=100 S=200

ALG 1058 / 1.4 1927 / 2.1 2748 / 3.2 3580 / 5.2
ALGw 1059 / 1.4 2036 / 2.1 3029 / 3.5 4165 / 6.5
HOM 12749 / 6.7 31347 / 17.3 48776 / 30.4 69342 / 48.2
HOMw 12211 / 6.3 30661 / 16.5 50300 / 31.2 77682 / 56.2
SPGL1 6092 / 6.3 11222 / 8.5 15100 / 10.4 21164 / 13.3
SPGL1w 8182 / 7.2 22370 / 13.5 35730 / 19.9 51134 / 27.4

Table 1. Average number of iterations vs. average computa-
tional time [secs] to compute xL′

, for all L′ = 1, . . . , L.

vector Δx [8]. To compute xL′
by SPGL1, the algorithm

is initialized with [xL′−1; 0], which is faster than starting the
method from scratch.

The proposed method requires significantly shorter com-
putational time as well as fewer iterations than the compared
methods. The computational time grows with S. With the
weighting matrix W2, the complexity of ALG and SPGL1
is slightly higher, because the solutions for W2 are “less
sparse”. On the other hand, HOM is faster with W2.

3.2. Audio Source Separation Application: Sparse Target-
Cancellation Filter Estimation

In audio source separation, an important tool is the target-
cancellation filter (CF), which is a multi-channel filter that
cancels the target signal but lets other signals pass. Its output
provides a noise reference signal, which is useful in various
methods and beamformers to extract the target signal from its
noisy recording; see, e.g., [14, 15, 16].

For a static source, the CF could be computed from a
noise-free recording of the target. We consider such left and
right channel recordings, respectively, modeled as xL = s +
yL and xR = g ∗ s + yR, where s is the target signal ob-
served on the left microphone, yL and yR are noise signals
(noise+interferences), and g is the relative impulse response
between the channels. g could be estimated from the noise-
free recording, and then the CF could be defined as such that
its output is h ∗xL−xR where h is the estimate of g [17, 18].

The MSE estimation of g leads to the task (21) where u =
xL and v = xR. Although g is not sparse in general, its sparse
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Fig. 3. Cancellation performance of CFs in terms of the NSR (the
higher the NSR, the better the cancellation) for a speaker that is
90 cm (solid lines) and 175 cm (dashed lines) distant from micro-
phones. Better NSRs are achieved for the speaker distance of 90 cm
than for 175 cm, because the effective length of g typically grows
with the distance.

estimates are also worth considering, for instance, to denoise
the estimate and/or to reduce the number of parameters for
easier interpretability of the estimate; see, e.g., [19, 20].

We compare CFs computed by MSE, ALG (τ = 0.05)
and ALGw for a target speaker that is 90 and 175 cm distant,
respectively, from two microphones; the real-world record-
ings are taken from [21]. In ALGw, the coefficients weighted
by τ/100 are selected based on the MSE estimate of g: their
absolute values in the MSE estimate are higher than 0.05.

Fig. 3 shows the Noise-to-Signal Ratio (NSR) in the
output of the CFs when an interfering speaker is present at
approximately the same distance. MSE achieves, naturally,
the best NSR; nevertheless, the NSRs values achieved by
ALGw and ALG are close to that of MSE while the number
of nonzero coefficients in resulting filters is ≤ 100. Viewing
the dependency of the NSR on the filter length enables us
to find the trade-off between the filter length, the number
of nonzero coefficients and the cancellation performance.
Examples of resulting filters are shown in Fig. 4.

4. CONCLUSIONS

The proposed algorithm is a fast method to compute solutions
of the weighted �1 optimization problem for all model orders
1, . . . , N .
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Fig. 4. Estimated g for L′ = 512 for the speaker distance 175 cm.
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