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ABSTRACT

In this work we combing two novelty in the area of Analog
Information Converter based on Compressed Sensing. A new
architecture, the Spread Spectrum Random Modulation Pre-
Integration and a new design flow, the rakeness based design
of a Compressed Sensing system. We demonstrate that com-
bining these approaches produces a strong reduction of the in-
ternal chipping frequency in the sensing coupled with a high
compression ratio with respect to standard Analog to Digital
Converter.

Index Terms— Compressive Sensing, Spread Spectrum,
Rakeness, ECG, Analog to Information Converter, RMPI

1. INTRODUCTION

In the last half decade, Compressive Sensing (CS) [1, 2] has
triggered a great deal of interest thanks to its capability to
merge signal acquisition and compression tasks, thus paving
the way for the design and implementation of Analog to In-
formation Converters (AICs) [3][4], which are able to acquire
all the signal information using less samples with respect to a
Nyquist-rate ADC.

This is possible thanks to the fact that the N -dimensional
input signals x to be processed are K-sparse, i.e., such that
a suitable basis Ψ = {ψ1, . . . , ψN} exits so that x = Ψα,
where Ψ is a N × N matrix with column vectors ψj , j =
1, . . . , N and the coefficient vector α has at most K non-
vanishing elements.

Several possible approached have been proposed to im-
plement an AIC (see [4] and references therein). We here
focus on the classic Random Modulation Pre Integration
(RMPI) architecture, first presented in [3]. In a RMPI archi-
tecture, CS acquisition is achieved by integrating the product
of a input signal time window with a suitable set of N -
dimensional sensing functions φj , j = 1, . . . ,M . With this,
the signal information content is represented by a measure-
ment vector y = Φx where Φ is a M × N sensing matrix
whose row are the sensing functions φj . The reconstruction

of x can be achieved by solving the following optimization
problem, which relies on the sparsity assumption [2]

α̂ = min ‖α‖l1
s.t. y = ΦΨα

(1)

where ‖ · ‖l1 =
∑
| · | is the standard l1 norm and x̂ = Ψα̂

is the reconstructed input signal. The convergence of x̂ to
x is guaranteed by the so-called restricted isometry property
of the matrix ΦΨ which roughly ensures that its application
must be able to conserve the input signal l2 norm [1, 2, 5].
When restricted isometry holds, the input signal reconstruc-
tion is guaranteed also withM � N , i.e., with a related com-
pression ratio equal to N/M . Interesting enough, restricted
isometry is always is achieved by considering Φ composed by
instances of a collection of independent and identically dis-
tributed random variables: in this case classical CS theory [2]
guarantees reconstruction for M ≥Mmin = 4K log(N/K).

To improve the performance of an RMPI, two different
approaches were recently proposed. The first [8, 6] relaxes
the restricted isometry property when the class of signals to
acquire is also localized,i.e., the information content is not
only sparse, but also non-uniformly distributed in the whole
signal domain. In this setting, random sensing functions are
also designed to maximize their rakeness, that is the average
energy which one is able to collect (i.e. rake) when the input
signal is projected into them. Exploiting such an approach
one is able to reduceMmin guaranteeing a correct reconstruc-
tion [8]. The second, called Spread Spectrum RMPI (SRMPI)
[10], exploits an innovative encoder architecture that increase
the RMPI performance by introducing a pre-spreading of the
input signal. Its main advantage is to reduce the system power
consumption by lowering the frequency switching in the sens-
ing stage 1.

In this paper, we combine both the previous approaches.
With respect to a standard SRMPI, we will be able to both
further decrease the internal switching frequency and to re-

1In [10] it shown that it is possible to halve the internal frequency switch-
ing.
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duce the amount of needed projections to reach a properly
reconstructed signal. Despite our approach is fully general,
to make a fair comparison, we demonstrate the achievable
advantages referring to electrocardiograms (ECGs), i.e., the
same signal employed when SRMPI and rakeness were orig-
inally presented [9, 8].

The paper is organized as follow: Sec. 2 reports the math-
ematical models grounding SRMPI and rakeness-based de-
sign of a CS system and presents the methodology we pro-
pose to combine SRMPI and rakeness. Sec 3 describes the
system setting and obtained results are reported.

2. SRMPI ARCHITECTURE AND
RAKENESS-BASED DESIGN OF A CS SYSTEM

2.1. SRMPI

As in the RMPI architecture, also for the SRMPI case we as-
sume that the the input signal is acquired at Nyquist rate in
a time window of length T . With this, x ∈ RN in the block
diagram of fig. 1(a) is a vector collecting the corresponding
N samples (i.e. the sampling rate of the input signal is N/T ,
which is then multiplied by a spreading sequence (SS) com-
posed by n ≥ N random antipodal symbols (i.e. its chipping
frequency is n/T ) and finally put at the the input ofM parallel
RMPI circuits.

To satisfy the restricted isometry property, all sensing
functions φj , j = 1, . . . ,M are assumed composed by an-
tipodal independent and identically distributed random sym-
bols with length m ≤ N ≤ n (i.e. with chipping frequency
m/T ) . The output of the SRMPI is a measurements vector
y ∈ RM sampled at frequency 1/T .

To get an intuitive flavor of the system behavior one may
refer to the simple case n = m = N , so that y = ΦS x =
F x, where S ∈ RN,N is a diagonal matrix whose non-null
elements are the SS coefficients. Hence, the matrix F = ΦS
represents the linear operator that links the input signal to the
measurements vector.

The main goal of this architecture is to enable a reduction
of the operating frequency of all switches used in a possi-
ble implementation of this architecture, which means that one
needs to consider an operating condition where both m and
n are as low as possible. Noting that n ≥ N by system con-
struction, the most obvious choice is n = N . The additional
degree of freedom is the value of m which we set < N , to
achieve an undersampling factor r = N

m with respect to the a
system where all switches operate at the Nyquist frequency.
With these assumptions, the generic measurement can be ex-
pressed as

yi =

N∑
j=1

Φi,d j
r eSj,j xj j = 1, . . . ,M

where d·e is the ceiling operator. In this case we can write
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Fig. 1: block diagrams of spread spectrum random modulation pre-
integration (a) and multi spread spectrum random modulation pre-integration
(b).

again y = F x where F ∈ RM,N with

Fi,j = Φi,d j
r eSj,j (2)

Hence an SRMPI system is equivalent to a classical RMPI
architecture where a sensing matrix F is assumed.

2.2. CS based on Rakeness

As mentioned in the Introduction, the aim of this technique is
to increase the energy collected by the sensing stage preserv-
ing at the same time the restricted isometry property of the
acquisition operator. To do so, we need to define the rakeness
between the two stochastic processes φ and x generating the
sensing functions and the signals instances as

ρ(φ, x) = Eφ,x

[
|〈φ, x〉|2

]
where φ is a generic sensing function and x a single input in-
stance. With this, the acquisition of the maximum energy dur-
ing the sampling phase can be obtained using sensing func-
tions φ solving

maxφ ρ(φ, x)

s.t.
〈φ, φ〉 = e
ρ(φ, φ) ≤ τe2

(3)

where e is the energy of each sampling vector and where the
second constraint is need to ensure that the solutions cope
with the restricted isometry property. The parameter τ can be
tuned on a proper range to set the randomness of φ, but whose
specific value is not critical since it does not appreciably alter
the overall system performance [6, 7].

As amply discussed in [8], the optimization problem (3)
can be solved for a fixed class of input signal, and its output is
the second-order statistical characterization of φ represented
by its correlation matrixCφ. Roughly speaking, adopting rak-
eness means shaping the statistical characterization of φ on
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the characteristic of x with a consequently improvement in
terms of signal reconstruction with respect to standard CS ex-
ploiting sampling functions based on independent and identi-
cally distributed random symbols.

2.3. Combining SRMPI with Rakeness

As shown in Sec. 2.1, for a SRMPI architecture the sens-
ing stage is represented by the matrix F , so that adopting a
rakeness-based acquisition in this case reduces to obtain the
correlation matrix CF which solves the optimization problem
(3) and which characterizes the process generating the rows
of F .

Taking (2) into account, CF needs to be changed by tun-
ing the correlations of the processes generating the rows of
Φ and different spreading sequences SS. Consequently, in
principle we should consider the correlation of the product of
the instances of two stochastic processes, which is very hard
task. To overcome this impasse and find a suitable solution
to our problem, we will fix the statistics of Φ, whose element
will be assumed i.i.d. antipodal random variables, so that the
statistical features of SS will be our degrees of freedom.

Let us to indicate with CF{j,k} the correlation between
two elements of F in the same row and at columns j and k

CF{j,k} = E [F·,jF·,k] = E
[
Φ·,d j

r eΦ·,d k
r eSj,jSk,k

]
=

=


E [Sj,jSk,k]

⌈
j
r

⌉
=
⌈
k
r

⌉
E
[
Φ·,d j

r eΦ·,d k
r eSj,jSk,k

] ⌈
j
r

⌉
6=
⌈
k
r

⌉
where the second equality holds since Φ·,jΦ·,j = 1. Further-
more since Φ·,j are composed by i.i.d random variable we can
further obtain

CF{j,k} =

 E [Sj,jSk,k]
⌈
j
r

⌉
=
⌈
k
r

⌉
0

⌈
j
r

⌉
6=
⌈
k
r

⌉ (4)

As a result, in this setting, fixing the correlation of the
spreading sequences SS to the one resulting by solving (3) is
equivalent to impose the desired correlation to the elements
of the rows of F only in the cases where

⌈
j
r

⌉
=
⌈
k
r

⌉
. As

a consequence, to achieve a better rareness-based design one
would need to increase r as much as possible. Yet, adopt-
ing high values of r can degrade the sensing diversity, i.e.,
it may increase the probability that two or more rows of F
are quite similar. Hence, a too large value of r may result
in destroying the total amount of collected information in the
sensing stage. On the contrary, with lower values of r we pre-
serve the amount of collected signal information but we may
lose part of the benefit introduced by the rakeness approach.
In addition to the above difficulty, the value of r achievable
by directly applying a rakeness based approach to an SRMPI
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Fig. 2: average of normalized power spectral density of ECG signals (dashed
curve) and power spectral densities obtained by solution of rakeness opti-
mization problem (solid curve).

architecture is hardly limited by the fact that in the original
SRMPI proposal r > 2 is cannot be obtained [9].

To cope with this, we propose a Multi Spread Spectrum
RMPI (MSRMPI) approach, whose block scheme is reported
in Fig. 1(b). It is composed by p different SRMPI where:
i) the SSs are generated following the correlation imposed
by the solution of (3), ii) each block produce M/p measure-
ments which can be collected to have the measurement vector
y. This architecture possesses the additional advantage of im-
proving the behavior with respect to the diversity reduction
imposed by the direct combination of the rakeness based ap-
proach with the SRMPI architecture. In fact the MSRMPI
uses p different spreading sequences with the aim to preserv-
ing the collected input signal information by a reduction of
the probability that similar F rows appear.

3. SIMULATION SETTING AND RESULTS

To test the performance of the MSRPI architecture we rely on
ECGs which can be considered sparse signals with respect to
a collection of Gabor Functions (GF) [8, 11].

The signal instances are synthetic ECG generated by [12]
with the same setting described in [8], sampled at 256 Hz
with a 1 second time window. The optimization problem (3)
is solved with a solution expressed in terms of power spec-
tral density (PSD) instead of correlation matrix, which is of
course fully equivalent since the ECG process is cycle sta-
tionary (see [8] for more details). In other words, assuming
the estimation of the average ECG PSD as the input, the solu-
tion of the rakeness optimization problem is the average PSD
of the sequences that characterize the sensing stage. For our
setting, both profiles are shown in Fig. 2.

It is important to note that the average PSD of ECGs
is close to zero in the high frequency range, but this does
not mean that no instance possesses components at high fre-
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Fig. 3: plot a: PSR as function of compression rate (N/M ) where the encoding is done by SRMPI with i.i.d. SSs (dashed lines) and SSs with PSD imposed
by rakenees (solid lines) for r = {2, 4}; plot b: PSR as function of compression rate (N/M ) where the encoding is done by MSRMPI with i.i.d. SSs (dashed
lines) and SSs with PSD imposed by rakenees (solid lines) for r = 4 and p = {2, 3, 4}; plot c: PSR as function of compression rate (N/M ) where the
encoding is done by MSRMPI with i.i.d. SSs (dashed lines) and SSs with PSD imposed by rakeness (solid lines) for r = 8 and p = {2, 3, 4}.

quency, but only that the probability of such an event is low.
As it can be seen, a rakeness-based design copes with this fea-
tures by imposing a non-zero PSD of the spreading sequences
also at high frequencies.

To assess performance improvement of the MSRMPI ar-
chitecture we consider two cases: i.i.d SSs [9], which will be
our reference case, and SSs with PSD imposed by a rakeness-
based design and generated by a Linear probability Feedback
Process [13, 14, 15].

All results are obtained by performing montecarlo simula-
tion over 2000 trials, where the input signal reconstruction is
done by (1) adopting Cplex optimization toolbox2. As a figure
of merit, we use the probability of successful reconstruction
(PSR), defined as PSR = Pr(‖α‖ ≥ 20‖α− α̂‖).

We simulated first the SRMPI architecture with r =
{2, 4}. The related results are shown on Fig. 3-(a). When
r = 2, a slight improvement can be obtained by rakeness
based design with respect to the reference i.i.d. case and
that PSR=1 can be obtained only exploiting rakeness. As
expected, such an improvement with respect to the reference
case increases when r = 4, but PSR=1 is never achieved due
to the intrinsic limitation of the SRMPI architecture.

The MSRMPI architecture was tested first for r = 4. The
PSR trends are shown in Fig. 3-(b) which clarifies the ad-
vantages introduces by this approach. Here we are able to
reach PSR=1 using p = 3, i.e., three different spreading se-
quence, in both considered environment either with i.i.d or
rakenees based spreading sequences but rakenees approach
reach PSR=1 with a N/M ≤ 4 while i.i.d. sequences reach
PSR=1 only for N/M ≤ 2.5.

The case r = 8 was also analyzed. This correspond to
m = 32 and implies a strong reduction of the chipping fre-
quency in the sensing. The results in terms of PSR are shown
on Fig. 3-(c) which show similar improvement as Fig. 3-(b)
for r = 4.

2web site:
http://www-01.ibm.com/spftwere/integration/optimization/cplex-optimizer

4. CONCLUSIONS

We demonstrated that combining rakeness with SRMPI pro-
duces a strong reduction of the internal chipping frequency in
the sensing if a multi spread architecture is used. We have
shown that MSRMPI is able to reach perfect signal recon-
struction by means of 4 SSs operating at Nyquist rate and
85 projections done with an internal frequency reduction by
a factor 8 with respect to the Nyquist rate. In the same set-
ting, classical RMPI arrives to PSR=1 only with more then
100 projections all of them computed at Nyquist rate3.
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