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ABSTRACT

We investigate the problem of extrapolation of band-limited signals
on the 2-sphere in the presence of noise. Specifically, given incom-
plete or spatially limited measurements subject to noise, find the
unique extrapolation to the complete 2-sphere. We present an an-
alytic solution to the extrapolation problem based on the expansion
of a signal in Slepian basis corresponding to an orthogonal set of
eigenfunctions of an associated energy concentration problem. An
alternative equivalent iterative algorithm is also developed for prac-
tical implementation and guidelines are proposed to choose the pa-
rameters of the iterative algorithm. The capability of the proposed
extrapolation is compared and demonstrated with the help of an il-
lustration example.

Index Terms— 2-sphere; signal extrapolation; bandlimited sig-
nals; spherical harmonics.

1. INTRODUCTION

The development of signal processing techniques for signals defined
on the sphere finds applications in various branches of sciences and
engineering (e.g., [1–5]). In this paper, we consider the fundamental
signal processing problem of extrapolation of a band-limited signal
from its noisy observations taken over a limited or incomplete spatial
region on the sphere. Using the Earth topography, as an example,
a region can be irregular such as a continent or regular such as a
polar cap region, without any essential change in the theory which
underpins concentration [3] and extrapolation problems [5].

1.1. Relation to Prior Work

The problem of band-limited signal extrapolation has been exten-
sively studied for signals in the time domain [6–9]. The iterative
methods to extrapolate the signal, based on the successive reduction
of the mean-square error are generally preferred as compared to the
analytic solutions due to the difficulty in implementation of the an-
alytic methods [8, 9]. If the observations are subject to noise, the
extrapolation problem becomes ill-conditioned and the regularized
solutions are often considered [9], which requires additional knowl-
edge about the signal beyond its band-limited character.

For signals on the sphere, the Papoulis algorithm has been re-
visited and various algorithms have been proposed [5, 10, 11]. An
analogue of the Papoulis algorithm, which exploits the bandlimiting
characteristic of a signal to be extrapolated, is presented in [5, 10].
In the discrete (sampled) spatial domain, an iterative gradient algo-
rithm which converges to the minimum norm least square solution
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is proposed in [12] and its modified version with fast convergence
has been developed in [11]. The regularized solution is developed to
counter the effect of noise in the extrapolation of signal [12]. How-
ever, the choice of the regularization parameter is not considered.

1.2. Contributions

In this work, we consider the problem of extrapolating a signal from
its noisy measurements made over the limited spatial region. We
present an analytic solution based on the expansion of a signal in
Slepian basis, obtained as a solution of concentration problem on the
sphere [3]. The proposed solution takes into account the information
about the bound on the noise energy in the region over which the
observations are made. We also present an equivalent iterative so-
lution which does not require the computation of Slepian basis and
converges to the analytic solution. The implementation of the pro-
posed method is also outlined and illustration is provided to show
the capability of the proposed iterative algorithm.

2. PRELIMINARIES

2.1. Signals on the 2-Sphere

We consider the complex Hilbert space finite energy functions on
the 2-sphere, L2(S2), equipped with inner product for functions f, g
given by

〈f, g〉 ,
∫
S2
f(x̂)g(x̂) ds(x̂), (1)

which induces a norm ‖f‖ , 〈f, f〉1/2. Here, (·) denotes the com-
plex conjugate operation and x̂ , (sin θ cos θ,
sin θ sinφ, cos θ)T ∈ S2 ⊂ R3 stands for a point on the 2-
sphere, where (·)T represents the vector transpose, θ ∈ [0, π]
and φ ∈ [0, 2π) denote the co-latitude and longitude respectively
and ds(x̂) = sin θ dθ dφ is the surface measure on the 2-sphere.
Also define 〈f, g〉R ,

∫
R
f(x̂)g(x̂) ds(x̂) as the inner product of

functions evaluated over the region R ⊂ S2 and ‖f‖R , 〈f, f〉1/2R

as the energy of the signal f with in the regionR. The functions with
finite energy (induced norm) are referred as signals on the sphere.

2.2. Spherical Harmonics

Spherical harmonic functions (or spherical harmonics for short), de-
noted by Y m

` (x̂) = Y m
` (θ, φ) [13], defined for integer degree ` ≥ 0

and integer orderm ≤ |`| serve as complete orthonormal set of basis
functions. Therefore, a signal f ∈ L2(S2) can be expressed as

f(x̂) =

∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (x̂), (2)
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where

(f)m` , 〈f, Y m
` 〉 (3)

denotes the spherical harmonic coefficient of degree ` and order m
and form the spectral representation of signal. The signal f is said to
be band-limited at degree L if (f)m` = 0 for ` > L. The set of such
band-limited signals forms a subspace of L2(S2) and is denoted by
HL.

2.3. Operators on the Sphere

Define an operator K for signals on the sphere using general Fred-
holm integral equation

(Kf)(x̂) =

∫
S2
K(x̂, ŷ) f(ŷ)ds(ŷ), (4)

where K(x̂, ŷ) is the kernel for an operator K. Using the definition
in (4)

Definition 1 (Spatial Selection Operator). Define the spatial selec-
tion operator KR that selects the function in a region R ⊂ S2 with
kernel given by

KR(x̂, ŷ) , IR(x̂)δ(x̂, ŷ), (5)

where IR(x̂) = 1 for x̂ ∈ R ⊂ S2 and IR(x̂) = 0 for x̂ ∈ S2\R is
an indicator function of the region R and δ(x̂, ŷ) denotes the Dirac
delta function on the sphere.

Definition 2 (Spectral Selection Operator). Define the spectral se-
lection operator KL which band-limits the signal with maximum
spherical harmonic degree L with kernel given by

KL(x̂, ŷ) ,
L∑

`=0

∑̀
m=−`

Y m
` (x̂)Y m

` (ŷ). (6)

Since both the operators are projections operator, they are idem-
potent. Furthermore, they are also self-adjoint in nature.

2.4. Slepian Concentration Problem on the Sphere

Analogous to the Slepian concentration problem in time and fre-
quency domain, the concentration problem on the sphere for finding
the functions with simultaneous concentration in both spatial and
spectral domains has been studied [3, 14]. In order to maximize the
spatial concentration of a bandlimited signal h ∈ L2(S2) with band-
limit L within the region R, the spatial concentration ratio

λ =
‖h‖2R
‖h‖2

(7)

is maximized, where 0 < λ < 1 is a measure of spatial concentra-
tion. The concentration problem in (7) can be expressed in spectral
domain as

λ =

L∑̀
=0

∑̀
m=−`

L∑
`′=0

`′∑
m′=−`′

(h)m` (h)m
′

`′ E``′,mm′

L∑̀
=0

∑̀
m=−`

|(h)m` |2
, (8)

where |(·)| gives the magnitude and

E``′,mm′ =

∫
R

Y m
` (x̂)Y m′

`′ (x̂)ds(x̂). (9)

Provided E``′,mm′ can be computed over the region R, the concen-
tration problem in (8) can be solved as an algebraic eigenvalue prob-
lem, the solution of which gives (L + 1)2 orthonoromal eigenfunc-
tions. Let the eigenfunctions be denoted by hp, p ∈ [1, 2, . . . , (L+
1)2] and the associated eigenvalue for each eigenfunction is given by
λp. We note that the eigenfunctions serve as an alternative complete
basis, referred as Slepian basis, for the representation of a signal on
the sphere. Furthermore, the eigenfunctions are orthogonal over the
region R, that is,

〈hp, hq〉 = δp,q, 〈hp, hq〉R = λpδp,q. (10)

3. PROBLEM STATEMENT

Let f ∈ HL be the band-limited signal with maximum degree L.
Furthermore, assume that f is only known or can be only observed
over some region R ⊂ S2 on the sphere, where the observations
are also subject to noise. Let the known signal be denoted by g ∈
L2(S2), given by

g(x̂) = (KRf)(x̂) + z(x̂), (11)

where z denotes the noise.
Given g(x̂) ∈ L2(S2), we consider the problem of determining

f̃(x̂) ∈ HL as an estimate of the signal f(x̂) ∈ HL for all x̂ ∈ S2

with the assumption that the energy of the noise in the region R
is less than or equal to the known bound ε2, that is, ‖z‖2R ≤ ε2.
Mathematically, find f̃(x̂) ∈ HL such that its norm is minimized,
that is,

min
∥∥f̃∥∥2, (12)

under the constraint ∥∥f̃ − g∥∥2
R
≤ ε2. (13)

4. PROPOSED EXTRAPOLATION SOLUTIONS

Here we present the solution to the signal extrapolation problem pre-
sented in previous section. The result is presented in the form of the
following theorem.

Theorem 1. The band-limited extrapolated signal f̃(x̂) ∈ HL sat-
isfying the minimization condition in (12) with respect to the con-
straint in (13) can be determined from the noisy observations g(x̂)
given in (11) as

f̃(x̂) =

(L+1)2∑
p=1

aphp(x̂), (14)

with
ap =

µλpbp
1 + µλp

, (15)

where

bp ,
1

λp
〈g, hp〉R, (16)

and µ > 0 and is chosen as a solution of

(L+1)2∑
p=1

λp|bp|2

(µλp + 1)2
= ε2. (17)

Proof. By defining ap , 〈f̃ , hp〉 and using (16), we write f̃ and g
as

f̃(x̂) =

(L+1)2∑
p=1

aphp(x̂), (18)
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g(x̂) =

(L+1)2∑
p=0

bphp(x̂), x̂ ∈ R, (19)

and formulate the objective function in (12), which is required to be
minimized, as

O =

(L+1)2∑
p=1

|ap|2
 , (20)

and the constraint in (13)

(L+1)2∑
p=1

λp|bp − ap|2 ≤ ε2. (21)

Formulating the minimization problem in (12) using the Lagrangian
multiplier as follows

L =

(L+1)2∑
p=1

|ap|2 + µλp|bp − ap|2, (22)

where µ is the Lagrangian multiplier. Taking the derivative with
respect to ap and equating the result to 0 gives

ap + µλpap − µλpbp = 0, (23)

which when solved for ap yields the result stated in (15).
Combining equations (15) and (21), µ can be determined as

M(µ) ,
(L+1)2∑
p=1

λp|bp|2

(µλp + 1)2
≤ ε2, (24)

such that it minimizes the objective function in (20) for ap given in
(15). Since λp > 0, we note that M(−µ) > M(µ), which implies
M(µ) is monotonically decreasing function of µ and µ > 0 should
be chosen. However, the objective function in (20) is minimized
for smaller value of µ. Combining this fact with the requirement in
(21), µ should be the positive root of (17) if it exists or otherwise
µ =∞.

Corollary 1. For any value of µ, it can be shown that

‖f‖2R +
2

µ
O +M(µ) = ‖g‖2R. (25)

4.1. Iterative Algorithm

The implementation of the solution to the extrapolation problem pre-
sented in Theorem 1 requires the computation of Slepian basis for
given L and the region R ⊂ S2. The Slepian basis can be deter-
mined for azimuthally symmetric regions [3], however these cannot
be exactly computed for arbitrary region R. Here, we address this
problem and propose an equivalent iterative algorithm in the form of
the following theorem.

Theorem 2. An iterative method, equivalent to the solution pro-
posed in Theorem 1, to determine a band-limited extrapolated signal
f̃(x̂) ∈ L2(S2) from noisy measurements g(x̂) given in (11) is

f̃n+1(x̂) = KL

[
(1− α/µ)f̃n(x̂) + αKR

(
g(x̂)− f̃n(x̂)

)]
,

(26)
where f̃n(x̂) and f̃n+1(x̂) denote the extrapolated signal at the nth

and (n + 1)th iterations respectively and the initial condition is
f0(x̂) = 0. Here choose

0 < α <
2µ

1 + µ
. (27)

and

µ >
‖g(x̂)‖R − ε

ε
. (28)

Proof. We show that the iterative solution presented (26) converges
to the solution presented in Theorem 1, that is,

lim
n→∞

f̃n+1(x̂) = f̃(x̂). (29)

By defining

f̃n(x̂) ,
(L+1)2∑
p=1

ap,nhp(x̂), (30)

and using (26) and employing the orthogonality of Slepian basis, we
can determine the coefficients ap,n+1 as

ap,n+1 = (1− α/µ− αλp)ap,n + αλpbp, (31)

or recursively by putting ap,0 = 0 as

ap,n =
λpbp

λp + 1/µ
[1− (1− α(λp + 1/µ))n] . (32)

Taking a value for α as defined in (27), we obtain

lim
n→∞

|ap − ap,n|2 = 0, (33)

which is equivalent to (29). For the value of µ, following the result
of Corollary 1 in (25) gives

µ‖g‖2R − µM(µ)

µ+ 2
> O > µ2M(µ), (34)

or equivalently

µ >
‖g‖R −

√
M(µ)√

M(µ)
,

which when compared to (17) gives (28) and completes the proof of
theorem.

Remark 1. We note that the proposed iterative algorithm does not
require the computation of eigenfunctions and only requires the in-
formation about the bound on the noise level. If the observed signal
is not corrupted with noise, that is, ε = 0, which implies µ =∞, we
note that the iterative algorithm in (26) becomes the iterative algo-
rithm for extrapolation proposed in [5, 10].

4.2. Implementation

In practice, the region S2\R of the sphere over which the observa-
tions are not available or to be extrapolated can be a union of differ-
ent non-connected regions. For example, the estimation of the un-
observed gravity data near the poles is well known in geodesy [15].
A similar problem exists in the estimation of head-related transfer
function [16] and has been considered in [5] in the development of
extrapolation algorithm. We present the implementation of an iter-
ative algorithm presented in Theorem 2 in the most general setting,
where the observations are made randomly over the sphere and do
not need to be in some connected region.

We use equiangular sampling scheme proposed in [17] which re-
quires N = 2(L+1)2 number of samples to represent band-limited
signal on the sphere. Let ŵ = [ŵ1, ŵ2, . . . , ŵN ] denote the N
samples on the sphere, which are ordered such that the observations
are available over the first Q ≤ N samples. We define the signal f
in sampled spatial domain as

f , [f(ŵ1), f(ŵ2), . . . , f(ŵN )]T (35)
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(a) f(x̂) (b) (KRf)(x̂)

(c) g(x̂) (d) f̃n(x̂)

Fig. 1: (a) The Earth topographic map as signal f(x̂) with band-
limit L − 31 (b) Spatially limited signal (KRf)(x̂), (c) the known
signal (KRf)(x̂) + z(x̂) and (d) the extrapolated signal f̃n(x̂) for
n = 50.

and known noise corrupted signal g as

g , [g(ŵ1), g(ŵ2), . . . , g(ŵQ)]
T . (36)

The iterative algorithm requires the implementation of spatial
selection and spectral selection operators. The spatial selection oper-
ation for Q number of sample points over which the signal is known
can be implemented in the form of matrix D = {Du,v} of size
Q×N with entries given by

Du,v =

{
1 0 ≤ u = v ≤ Q
0 otherwise

(37)

which selects the firstQ samples of a signal consisting ofN samples.
Note that the matrix operator DT appends N − Q zeros to the Q
sample measured signal. The spectral selection operation to band-
limit the signal up to degree L is performed by taking the spherical
harmonic transform of f or DTg.

1

5. ILLUSTRATION

Here, we illustrate the capability of the proposed algorithm to ex-
trapolate the signal in a noisy environment. We consider the Earth
topographic map as a signal f(x̂) shown in Fig. 1 (a), band-limited
to L = 31, which is synthesized using the spherical harmonic model
of the topography of Earth. In order to quantify the quality of any
signal h(x̂) with respect to the original (reference) signal f(x̂), we
define the signal-to-noise ratio (SNR) for the signal h(x̂) as

SNRh = 20 log
‖f‖
‖f − h‖ .

We choose R = {π/4 ≤ θ ≤ π, 0 ≤ φ < 2π} over which the mea-
surements are taken. The spatially limited signal KRf is shown in

1Spherical harmonic model of Earth topographic map is available at
http://www.ipgp.fr/˜wieczor/SH/.
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Fig. 2: SNRf̃n is plotted against number of iterations for the extrap-
olated signal f̃n using the proposed iterative method (solid line) and
the algorithm reported in [5] (dashed).

Fig. 1(b) with SNRKRf = 28.96dB. We assume that the measure-
ments are subject to additive Gaussian noise and the known noise
corrupted signal is shown in Fig. 1(c) with SNRg = 6.87dB. Using
the proposed iterative algorithm with µ = 22 and α = 0.34, the
extrapolated signal f̃n is obtained with SNRf̃n = 25.76dB and is
shown in Fig. 1(d) for n = 50.

We also compare the improvement of our algorithm with an iter-
ative gradient algorithm proposed in [5]. SNRf̃n of the extrapolated
signal is compared in Fig. 2 against the number of iterations. Since
the method in [5] does not take into account the presence of noise
in the signal, its solution deviates from the original signal with the
number of iterations.

6. CONCLUDING REMARKS

We have considered the extrapolation of band-limited signals defined
on the 2-sphere. Taking into account the bound on the energy of the
noise corrupting the measurements made over incomplete or limited
spatial domain, an analytic solution based on the expansion of signal
in the Slepian basis has been presented for extrapolation to the com-
plete sphere. An alternative iterative solution has been developed for
practical implementation, where we have also devised bounds on the
parameters of the algorithm.
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