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Abstract—In Distributed Compressive Sensing (DCS), corre-
lated sparse signals stand for an ensemble of signals characterized
by presenting a sparse correlation. If one signal is known apriori,
the remaining signals in the ensemble can be reconstructed
using l1-minimization with far fewer measurements compared
to separate CS reconstruction. Reconstruction of such correlated
signals is possible via Modified-CS and Regularized-Modified-BP.
However, these methods are greatly influenced by the support
set of the known signal that includes locations irrelevant to the
target signal. While recovering each signal, prior to Modified-
CS or Regularized-Modified-BP, we propose an adaptation step
to retain only the sparse locations significant to that signal.
We call our proposed methods as Modified-Adaptive-BP and
Regularized-Modified-Adaptive-BP. Theoretical guarantees and
experimental results show that our proposed methods provide
efficient recovery compared to that of the Modified-CS and its
regularized version.

Index Terms—Distributed Compressive Sensing, Correlated
sparse signals, Adaptation, Modified-Adaptive-BP, Regularized-
Modified-Adaptive-BP.

I. INTRODUCTION

Compressive Sensing (CS) ensures the recovery of a sparse
signal x ∈ Rn using a small number of linear observations
of the form y = Ax ∈ Rm, where A ∈ Rm×n is a known
matrix with m ≪ n. If the signal x is S-sparse, in the sense
that there are S non-zero entries in x, then exact recovery
is possible through l1-minimization given below provided the
number of measurements m = O(S log(n/S)) [1] [2]:

min
β

∥β∥ℓ1 s.t. Aβ = y. (1)

Robustness of CS can be studied using the Restricted Isometry
Property (RIP) of the sensing matrix. For all S-sparse x, a
sensing matrix A is said to follow RIP if

(1− δS)∥x∥2ℓ2 ≤ ∥Ax∥2ℓ2 ≤ (1 + δS)∥x∥2ℓ2 (2)

Matrix A is said to be obeying RIP if the restricted isometry
constant δS is not close to one [3]. RIP implies that all subsets
of S columns of A will be nearly orthogonal to each other.

A. Motivation and Relation to Prior Work

Distributed Compressive Sensing (DCS) exploits both intra-
signal and inter-signal correlation structures. DCS encodes
each signal individually by projecting it onto another, inco-
herent, random basis and then transmits just a few of the
resulting coefficients to the decoder. Therefore, a decoder
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can reconstruct all the correlated signals precisely. As the
signals are sparse, one could encode and decode each of them
separately using the CS framework. If one signal is known
apriori, motivated by the idea of using side information in
DCS, the remaining signals in the ensemble can be recon-
structed using l1-minimization with far fewer measurements
compared to seperate CS reconstruction. Reconstruction of
such correlated signals is possible via Modified-CS (MOD-
CS) [4] and Regularized-Modified-BP (Reg-MOD-BP) [5].
However, these methods are greatly influenced by the support
set of the known signal which also includes locations irrelevant
to the target signal. Therefore, we propose an adaptation step,
prior to MOD-CS or Reg-MOD-BP, which tries to retain only
those locations that are relevant to the target signal. We call
our proposed methods as Modified-Adaptive-BP (MABP) and
Regularized-Modified-Adaptive-BP (RMABP).

B. Paper Outline

The rest of this paper is organized as follows. In section 2,
we discuss the correlated sparse signal model and two existing
BP based recovery techniques. In section 3, we propose our
modified adaptive basis pursuit methods for correlated sparse
signals and the theoretical guarantees are given in section 4.
In section 5, we present the simulation results of our proposed
methods and compare its performance to that of the existing
methods. Section 6 concludes the paper.

II. RECOVERY OF CORRELATED SPARSE SIGNALS

In this section, we introduce the signal model of correlated
sparse signals and discuss two BP based CS reconstruction
algorithms. In the correlated sparse signal ensemble, each sig-
nal consists of two components: a common sparse component
that is present in all of the signals, and a sparse innovation
component that is unique to each signal. This is similar to the
Joint Sparse Model (JSM) analyzed in [6]. Let us denote the
J signals in the ensemble by x(t) , t ∈ 1, 2, ..., J . Assume that
x(t) ∈ Rn and it has a sparse representation in basis Ψ. The
correlated sparse signal model is,

x(t) = z + z(t) t ∈ 1, 2, ..., J (3)

with z = ΨΘz , ∥Θz∥0 = K and z(t) = ΨΘ(t), ∥Θ(t)∥0 =
K(t). Let A be the i.i.d. Gaussian measurement matrix for
signal x(t) such that

y(t) = Ax(t) (4)
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gives m ≪ n incoherent measurements of x(t). In the
reconstruction part, we need to estimate every n-length sparse
signal x(t) from its m-length measurement vector. The support
of x(t) is denoted as N and it can be split as N = T ∪∆\∆e

where T is the known part of the support, ∆e is the error in T
and ∆ is the unknown part to be estimated. The known part is
either available from prior knowledge (as in static problems)
or an estimate of support obtained from the known signal in
the ensemble (as in time sequence problems). The error in
the known part ∆e comes from those non-zero locations in
the signal with support set T that becomes zero in the target
signal. The sparsity patterns change slowly and therefore, ∆
and ∆e are assumed to be much smaller than |T |.

A. Modified Compressive Sensing (MOD-CS)

For problems with partially known support, a CS reconstruc-
tion procedure called MOD-CS was proposed in [4]. MOD-CS
aimed at estimating the sparsest possible signal estimate whose
support contains T and which satisfies the data constraint (5).
The convex optimization problem is formulated as

min
β

∥βT c∥ℓ1 s.t. Aβ = y (5)

where T c := [1 : n]\T is the complement of T . [4] applied
MOD-CS for time sequence reconstruction problem where y ≡
y(t) and x ≡ x(t) with support N ≡ N (t). At time t = 1, CS
reconstruction is applied with enough measurements to give
exact recovery. At each time t > 1, the known part of the
support is estimated as T = N̂ (t−1) and the signal x̂(t) is
obtained using (5). The support at time t, N̂ (t) is computed by
thresholding x̂(t) with a small threshold µ0. The two sufficient
conditions for MOD-CS to give exact reconstruction is given
in terms of the restricted isometry constant δ as,

δ|T |+|∆| < 1 (6)

2δ2|∆| + δ3|∆| + δ|T | + δ2|T |+|∆| + 2δ2|T |+2|∆| < 1. (7)

The conditions hold if |∆| < |T | and δ|T |+2|∆| < 0.5. The
requirement for CS is

2δ2(|T |+|∆|) + δ3(|T |+|∆|) < 1 (8)

which holds when δ3(|T |+|∆|) < 1
3 . The requirements for

MOD-CS is much weaker compared to that of CS [4].

B. Regularized Modified Basis Pursuit (Reg-MOD-BP)

MOD-CS puts no constraint on xT , and therefore, if the
available measurements m is small, xT might result in a very
bad reconstruction. In [5], a method was proposed to constrain
xT by bounding (||βT − x̂T ||)∞, i.e.

min
β

∥βT c∥ℓ1 s.t. Aβ = y , (||βT − x̂T ||)∞ ≤ µ (9)

where x̂T is the signal estimate on T . Therefore, Reg-MOD-
BP includes a data constraint used in CS and a second
constraint to impose the closeness of x to x̂. The sufficient con-
ditions for Reg-MOD-BP to give exact reconstruction includes
the two conditions corresponding to MOD-CS and another

condition on the closeness of x̂T to xT . Their conditions on x̂
seemed restrictive but their simulation results showed smaller
error bound compared to that of MOD-CS.

III. PROPOSED MODIFIED ADAPTIVE BASIS PURSUITS
FOR CORRELATED SPARSE SIGNALS

Reconstruction of correlated sparse signals using MOD-CS
or Reg-MOD-BP with the help of known partial support has
a drawback: The estimated support set T of the known signal,
used for recovering a signal x(t) in the ensemble, not only
contains the common support K but also the wrong locations.
Solving (5) or (9) might lead to complication and inaccuracy
(especially in the case K being closer to K(t) ). To overcome
this drawback, for each signal x(t), we propose to include a
adaptation step to drop the atoms irrelevant to x(t) in order to
improve the speed and accuracy of the signal approximations
through MOD-CS and Reg-MOD-BP. We term these methods
as MABP and RMABP respectively.

For each signal x(t), the known part of the support is
estimated as

T = {i = [1 : n] : |x̂(t−1)(i)|2 > µ0}. (10)

After estimation of the known support T , an adaptation
procedure follows: First, the approximate coefficients (x̂T =
Φ†

T .y
(t) are computed and the atoms with approximate co-

efficients smaller than µa.max |x̂T | are deleted in order to
initialize the support set more effectively. µa is the adaptation
parameter controlling the number of atoms in the delete set
∆a. Then the estimated support set is initialized as Γ = T\∆a.
Then, approximate coefficients x̂Γ of the estimated support set
are computed. Then the MABP problem is formulated as,

min
β

∥βΓc∥ℓ1 s.t. Aβ = y. (11)

where Γc := [1 : n]\Γ is the complement of Γ.
In [5], we observed that Reg-MOD-BP is a restricted

framework compared to MOD-CS. Though it gives lesser
reconstruction error than MOD-CS for certain range of mea-
surements, it cannot guarantee exact reconstruction. Due to
the restricted framework, it is expected that the inclusion of
the adaptation step will not improve the guarantees for exact
reconstruction of Reg-MOD-BP. However, for the comparison
purpose, the RMABP is formulated as,

min
β

∥βΓc∥ℓ1 s.t. Aβ = y , (||βΓ − x̂Γ||)∞ ≤ µ. (12)

There are some intuitions for proposing this kind of mod-
ifications to the MOD-CS and Reg-MOD-BP. In the known
support estimation step, when α is small, it chooses more
atoms. Since a final refined selection step follows, a coarse
selection of known support will not affect the reconstruc-
tion performance. Care should be taken while deciding the
adaptation parameter. If µa is too close to zero, then MABP
behaves like MOD-CS. On the other hand, if µa is too
close to one, it behaves like traditional BP. The adaptation
procedure has a signal approximation step using Modified
Gram-Schmidt algorithm requiring [7] O(T 2m) computations
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which is insignificant compared to the complexity of BP.
Therefore, inclusion of adaptation step will not affect the
overall complexity of MABP and RMABP. Algorithm 1 shows
the step-by-step procedure involved in our proposed adapta-
tion based basis pursuits for reconstructing correlated sources
having partially disjoint support.

Algorithm 1 Proposed Adaptive Reconstruction of Correlated
Sparse Signals

Input:
Φ - Measurement matrix
y(t) - Measurement vector of x(t)

x̂(t−1) - Previous signal (known signal)
µ0 - selection threshold
µa - adaptation parameter
Initialization:
Estimate the known support as
T = {i = [1 : n] : |x̂(t−1)(i)|2 > µ0}.
Adaptation:
Step 1: The approximate coefficients (x̂T = Φ†

T .y
(t))

are computed and the atoms with approximate coefficients
smaller than µa.max |x̂T | are dropped.
Step 2: The known part T is replaced with Γ and the signal
estimate x̂0

Γ of the estimated support set Γ are estimated.
Basis Pursuit:
Solve the convex optimization problem to obtain an unique
minimizer of x(t)

Modified Adaptive BP:
minβ ∥βΓc∥ℓ1 s.t. Aβ = y
OR
Regularized Modified Adaptive BP:
minβ ∥βΓc∥ℓ1 s.t. Aβ = y , (||βΓ − x̂Γ||)∞ ≤ µ
End
Output:
x̂(t) - Estimated coefficients

IV. THEORETICAL GUARANTEES FOR EXACT
RECONSTRUCTION

A. Exact Reconstruction: MABP versus MOD-CS

Theorem 1: If T is the support set from known signal such
that N = T ∪ ∆\∆e and Γ is the retained support set after
adaptation, then MABP recovers the target signal with a higher
probability compared to the MOD-CS.

Due to adaptation, we have the retained support set Γ =
T\∆a such that,

|Γ| = |T | − |∆a| (13)

where ∆a is the set of atoms dropped and ∆a ⊂ T . x(t) is
the unique minimizer of MABP if,

δ|Γ|+|∆| < 1 (14)

2δ2|∆| + δ3|∆| + δ|Γ| + δ2|Γ|+|∆| + 2δ2|Γ|+2|∆| < 1 (15)

Considering the first condition, δ|Γ|+|∆| = δ|T |−|∆a|+|∆|
which implies δ|Γ|+|∆| < δ|T |+|∆|. Therefore, the first condi-
tion for exact recovery using MABP is weaker compared to
that of MOD-CS. Similarly, in the second condition, replacing
|Γ| with |T | − |∆a| reveals the fact that the second condition
also is weak compared to that of MOD-CS. Therefore, the
MABP has a higher probability of exact reconstruction com-
pared to that of the MOD-CS.

B. Exact Reconstruction: MABP versus Reg-Mod-BP

In ([5], Theorem 1), three conditions for x(t) being the
unique minimizer of (9) is given. Along with the two con-
ditions for x(t) given in (6) and (7), Reg-MOD-BP requires
one additional conditioning on x̂T . Though the conditioning
on x̂T seemed to be restrictive, they have a much better error
bound compared to that of MOD-CS. The closeness of x̂T to
x(t) is taken care by the second constraint in Reg-MOD-BP,
whereas in MABP, the adaptation step enforces it. Simulation
results in the following section show that MABP has a better
probability of exact reconstruction compared to that of Reg-
MOD-BP.

V. SIMULATION RESULTS

For our experiments, we generated two correlated sparse
signals (as in JSM-1) of length n=256. The total sparsity of
each signal is fixed as 25 with the sparsities of common and
innovation parts being 20 and 5 respectively. By choosing
different measurement values we performed signal recovery
using MOD-CS, Reg-MOD-BP, MABP and RMABP. For
each value of m, 250 independent trials are performed to
obtain the average results. In each trial, an m × n Gaussian
random measurement matrix is generated. For Reg-Mod-BP
and RMABP, µ is fixed as 0.1. For all four methods, the initial
selection threshold µ0 is fixed as 0.0001.

A. Reconstruction Performance

First, we present the probability of exact reconstruction
as a function of the number of measurements. Number of
measurements were chosen from m=60 to m=100 in steps
of 5. For MABP and RMABP, the adaptation parameter is set
to be 0.2. If the maximum magnitude difference between the
original signal and the reconstructed signal is smaller than
10−3, the reconstruction is considered to be perfect. Fig.1
shows that our proposed MABP has the best probability of
exact reconstruction among all four methods. For example,
at m=85, MABP gives 98% probability of exact recovery
whereas the other three methods recover with less than 80%
probability. Recovery performance of RMABP is same as that
of the Reg-MOD-BP.

Next, we present the average Mean Square Error (MSE) as a
function of number of measurements. As discussed in section
IV, the Reg-MOD-BP and our proposed RMABP have the
best error performance but pronounced only in the less mea-
surements region. Fig.2 shows the average MSE for different
measurement values. In the region where the reconstruction
occurs with higher probability, the average MSE is same for
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Fig. 1. Exact reconstruction versus number of measurements

Fig. 2. Average MSE versus number of measurements

all four methods (of the order of 10−9. Even in the region
where Reg-MOD-BP and RMABP have the least error, MABP
has much lesser MSE compared to MOD-CS.

B. Choice of the adaptation parameter µa

In this experiment, we show the probability of exact re-
construction as a function of number of measurements for
different values of adaptation parameter µa. Fig.3 shows the
reconstruction probability curves of MABP with µa ranging
from 0.05 to 0.25. As can be seen, MABP gives better
reconstruction when the adaptation parameter is fixed as 0.15
or 0.2. At m=85, reconstruction probability corresponding to
µa=0.15 is 1. When µa is reduced from 0.25 to 0.1 in steps
of 0.05, the performance of MABP improved. When µa is
reduced below 0.1 (for µa=0.05), the performance started
getting worser. Fig.4 shows the reconstruction probability
curves of RMABP. The adaptation parameter µa is varied
from 0.05 to 0.25. It is evident from the figure that the
adaptation parameter has no significant effect on the recovery

Fig. 3. Reconstruction probability versus number of measurements for
different values of µa - MABP

Fig. 4. Reconstruction probability versus number of measurements for
different values of µa - RMABP

performance of RMABP. Between m=80 and m=90, RMABP
gives its best reconstruction when µa=0.15.

VI. CONCLUSION

In this work, we proposed two basis pursuits for reconstruct-
ing correlated sparse signals. Our proposed MABP method
gave better probability of success compared to MOD-CS, Reg-
MOD-BP and our proposed RMABP. Therefore, in the case
of correlated sparse signals, the adaptation step improves the
reconstruction performance of MOD-CS. As expected, our
RMABP performed similar to Reg-MOD-BP. Both Reg-MOD-
BP and our RMABP gave lesser reconstruction error compared
to MABP only in the region where the probability of exact
reconstruction is less than 0.1. We are currently trying to
replace the basis pursuit in (11) with a greedy pursuit to give
a faster recovery.
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