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Abstract— Model based sparse signal recovery requires fewer
measurements and has attracted lots of attention recently. One
prototypical sparsity model is block sparsity whose stability is
guaranteed from block restricted isometry property (RIP). How-
ever, the existing block RIP methods in the �2 norm space only
consider Gaussian measurement case. In this paper, we extend
the block RIP to the Fourier measurement case and demonstrate
that the minimum number of measurements satisfying block RIP
is as low as O

(
sd log q log(sd log q) log2 s

)
, where d is the block

size, s represents the block sparsity, and N is the length of
unknowns satisfying N = qd for some integer q.

I. INTRODUCTION

Compressive Sensing (CS) has attracted great amount of

attention from various applications, such as wireless channel

estimation, sensor networks, and optical imaging, etc. Since

signals in these applications often possess certain structures,

researchers have proposed many model based compressive

sensing [1]–[6], where the number of essential measurements

required for stable recovery can be greatly reduced by utilizing

the structure information.

One popular prototypical signal model is the block sparsity,

which has been extensively studied in resent years [3]– [5].

In [3] and [4], the authors applied group norm method to

recover block sparse signal, and showed better recovery per-

formance compared to traditional methods. In [5], the authors

generalized [3] and [4] further by introducing the concept of

block restricted isometry property (RIP) to guarantee the stable

recovery of block sparse signal, where the tight Gaussian

measurements bound for the block RIP is much smaller than

that for standard RIP.

Though block RIP is a general framework that can adapt to

any block sparse signal, the existing results mainly focus on

Gaussian measurement case [1], [5]. On the other side, Fourier

measurement is also widely used and certain signals in Fourier

measurement system show block sparse structure too. In [6],

the group sparsity method was applied to recover block sparse

signal from Fourier measurements and could achieve better

performance compared to traditional method.

In this paper, we target at deriving the minimum number of

Fourier measurements that could guarantee the stable recovery
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of block sparse signal by extending the block RIP to Fourier

measurement system. The minimum number of measurements

is demonstrated to be O
(
sd log q log(sd log q) log2 s

)
, which

is much lower than the traditionally required measurements

for standard RIP, say O(( rlogN
ε2 )log( rlogN

ε2 )log2r), where d,

s and r represent the block size, the block sparsity and the

general sparsity respectively, ε is a certain small constant and

N is the length of unknowns satisfying N = qd for some

integer q.

II. REVIEW AND PROBLEM FORMULATION

Restricted isometry property was first introduced by Candes

and Tao in [9], which is used to offer a guarantee for stable

signal recovery.

Definition 1: Let Ψ be an M × N measurement matrix,

W be a subset of {1, . . . , N}, and ΨW denote the M × |W |
matrix that is composed of the columns of Ψ indexed by W .

Then Ψ is said to have the RIP of order s if there is the

smallest positive number δs satisfying:

C(1 − δs)‖v‖2
2 ≤ ‖ΨW v‖2

2 ≤ C(1 + δs)‖v‖2
2, (1)

for all set W , |W | ≤ s, any v ∈ C
W and some C > 0.

In [5], Eldar and Mishli extended the RIP to block sparse

case, i.e., block RIP. Before we give its definition, lets us

provide the definition of block sparsity model first:

Definition 2: (block sparsity) Let B =
{b1, . . . ,bq|L(b1) = d1, . . . ,L(bq) = dq} be the set

that divides {1, . . . , N} into q blocks

B = {1 . . . d1︸ ︷︷ ︸
b1

. . . N − dq + 1, . . . , N︸ ︷︷ ︸
bq

}, (2)

where bi’s are defined as the corresponding items and L(bi)
denotes the length of bi. Then u ∈ C

N is said to be s-

block sparse over B, if there exists s out of the q vectors

{u(b1), . . . ,u(bq)} satisfying that each of those s vectors

contains at least one nonzero element, where u(bi) denotes

the subvector of u indexed by block bi.

Remark 1: In [4] the authors introduced the concept of

group norm, which is often used to solve block sparse problem

[6]. Let x ∈ C
N be an arbitrary vector, then the (i, p)-

group norm of x over block B = {b1, . . . ,bq|L(b1) =
d1, . . . ,L(bq) = dq} is defined as

‖x‖i,p|B =
j=q∑
j=1

‖x(bj)‖i
p. (3)
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To simplify discussion, in the rest of the paper we as-

sume every block in B has the same size d, i.e., L(b1) =
. . .L(bq) = d and assume that N = qd for some integer

q. Moreover, we denote the set B under this condition as

B = {b1, . . . ,bq|N = qd,L(bi) = d}.

Definition 3: (block RIP [5]) Let Ψ be an M × N mea-

surement matrix, R be a subset of B = {b1, . . . ,bq|N =
qd,L(bi) = d}, and ΨR denote the M × |R| matrix that is

composed of the columns of Ψ indexed by R. Then Ψ is said

to have the block-RIP of order s, if for some number C > 0
there exists the smallest positive number δs|d satisfying

C(1 − δs|d)‖v‖2
2 ≤ ‖ΨRv‖2

2 ≤ C(1 + δs|d)‖v‖2
2, (4)

for all v and for all subset |R| ≤ s|d, where s|d denotes

certain s blocks from the block set {b1, . . . ,bq}.

In this paper, we will use the group norm based algorithm

proposed in [5] to recover block sparse signal. Hence, the

following second order cone programming (SOCP) problem

is formulated:

min
x

‖x‖1,2|B , s.t. y = Ψx. =⇒ SOCP: (5)

min
x,ti

q∑
i=1

ti s.t.

{
y = Ψx

‖x(bi)‖2 ≤ ti, ti ≥ 0 1 ≤ i ≤ q, (6)

where x, x(bj) and B has the same definition as in (2) and

(3) respectively, and Ψ is the M × N measurements as in

Definition 3.

We learn from [8] that when RIP constant of Ψ satisfies

δ3s +3δ4s < 2, any signal x with sparsity level no bigger than

s can be stably recovered from measurements y = Ψx + e,

where e is measurement noise. For simplicity, we always

replace the condition δ3s + 3δ4s < 2 with δ4s ≤ 1/2, since

δ3s ≤ δ4s. Therefore, our main problem can be reformulated

as deriving the minimum Fourier measurements satisfying

δ4s|d < 0.5.

III. BLOCK RIP GUARANTEES FOR FOURIER

MEASUREMENTS

Our following results and the corresponding proofs mainly

rely on the paper [7], but we have made necessary alterations

to fit our block sparse case better.

Lemma 1: Suppose {xi}1≤i≤l, l ≤ N , are l vectors of

length N , each of which having uniformly bounded entries,

||xi||∞ < K. Let R, |R| ≤ s|d, denote a subset of

B = {b1, . . . ,bq|N = qd,L(bi) = d} of size at most s,

and {εi}1≤i≤l denote independent, symmetric, {-1,1}-valued

random variables. Then there is

E sup
|R|≤s|d

∥∥∥∥∥
l∑

i=1

εixR
i ⊗ xR

i

∥∥∥∥∥
p

≤ w(l) · sup
|R|≤s|d

∥∥∥∥∥
l∑
i

xR
i ⊗ xR

i

∥∥∥∥∥
1
2

p

,

(7)

where || · ||p is the operator norm, and

w(l) = cK
√

sd log(s)
√

log l
√

log q (8)

for some number c.

Proof: Let β
q|d
p denote the unit ball of the (i, p)-group

norm ‖ · ‖i,p|B on C
N over q blocks B = {b1, . . . ,bq|N =

qd,L(bi) = d}. Suppose R is the subset of B that contains

|R| out of q blocks of B. Further assume that βR
p is a subset

of β
q|d
p whose vectors have identical support R.

Denote the expression in the left-hand side of (7) as G,

and let {gi}1≤i≤l be the standard independent normal random

variables. If we replace εi in (7) by gi, according to [7] (see

inequality (4.8) in [10] for more details) we have:

G ≤ c1E sup
|R|≤s|d

∣∣∣∣∣
∣∣∣∣∣

l∑
i=1

gixR
i ⊗ xR

i

∣∣∣∣∣
∣∣∣∣∣
p

= c1E sup
|R|≤s|d
x∈β

|R|
2

∣∣∣∣∣
l∑

i=1

gi < xi,x >2

∣∣∣∣∣

= c1E sup
|R|≤s|d
x∈βR

2

∣∣∣∣∣∣∣
l∑

i=1

gi

⎛
⎝ |R|∑

j=1

< xi(Rj),x(Rj) >

⎞
⎠2
∣∣∣∣∣∣∣

≤ c1E sup
|R|≤s|d
x∈βR

2

∣∣∣∣∣∣∣
l∑

i=1

gi

⎛
⎝ |R|∑

j=1

‖xi(Rj)‖2‖x(Rj)‖2

⎞
⎠2
∣∣∣∣∣∣∣ (9)

where < · > denotes inner product operation, Rj represents

the i-th element of set R, and xi(Rj) and x(Rj) represent the

subvector of xi and x indexed by block Rj respectively. The

last inequality in (9) results from Cauchy-Schwarz inequality.

Denote Bq
p and BT,q

p as unit balls of the norm ‖ · ‖2 on

C
q, where T is any subset of {1, . . . , q} of size at most s, and

each vector in BT,q
p has the same support T . Let us define two

types of vectors:

x̂i = {‖xi(b1)‖2, . . . , ‖xi(bq)‖2}, x̂i ∈ C
q, 1 ≤ i ≤ l, (10)

x̂ = {‖x(b1)‖2, . . . , ‖x(bq)‖2},x ∈ βR
2 , x̂ ∈ BT,q

2 . (11)

If we denote the expression of (9) as G1, then according to

(11) and (10) we have

G1 = c1E sup
|T |≤s

x∈BT,q
2

∣∣∣∣∣
l∑

i=1

gi < x̂i, x̂ >2

∣∣∣∣∣ . (12)

Similar to [7], we use Dudley’s inequality [11] to bound (12)

as:

G1 ≤ c2

∫ ∞

0

log0.5 N

⎛
⎝ ⋃

|T |≤s

BT,q
2 , σ, u

⎞
⎠ du, (13)

where N(Z, σ, u) has the same definition as in [7], namely

the minimal number of balls of radius u in pseudometric σ
centered in points of z that are required to cover the set Z. The

rest of proof essentially follows the step of [7], so we present

them for our proof integrity. Nevertheless, the following proof
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is more explicit. According to [7], σ in our case has the form:

σ = [
l∑

i=1,|T |≤s

x̂,ŷ∈BT,q
2

(< x̂i, x̂ >2 − < x̂i, ŷ >2)]0.5

≤ [
l∑

i=1,|T |≤s

x̂,ŷ∈BT,q
2

< x̂i, x̂ + ŷ >2< x̂i, x̂ − ŷ >2]0.5

≤ 2 max
|T |≤s

ẑ∈BT,q
2

(
l∑

i=1

< x̂i, ẑ >2)0.5 max
i≤l

< x̂i, x̂ − ŷ > . (14)

Let us denote max |T |≤s

ẑ∈BT,q
2

(
∑l

i=1 < x̂i, ẑ >2)0.5 by C.

Moreover in (13), let us replace the pseudometric σ with

‖ · ‖X and replace
⋃

|T |≤s BT,q
2 with 1√

s
Ds,q

2 , where Ds,q
p =⋃

|T |≤s BT,q
p , and ‖x‖X = maxi≤l | < x̂i, ẑ > |. Then:

G1 ≤ c3C
√

s

∫ ∞

0

log0.5N

(
1√
s
Ds,q

2 , ‖ · ‖, u
)

du. (15)

Since 1√
r
Ds,q

2 ⊆ Ds,q
1 , we can replace 1√

r
Ds,q

2 in (15) with

Ds,q
1 . Hence, we can complete our proof if∫ ∞

0

log
1
2 N (Ds,q

1 , ‖ · ‖X , u) du ≤ c4 log s
√

log q log l (16)

is true.

Since, for any q ≤ i ≤ l, ‖x̂i‖∞ = max1≤i≤q ‖xi(di)‖2 ≤√
K2d = K

√
d, the upper bound of the integral in (16) can

be set as K
√

d. According to Lemma 3.9 in [7], for big u,

N (Ds,q
1 , ‖ · ‖X , u) in our case has the follow form:

big u: N (Ds,q
1 , ‖ · ‖X , u) ≤ (4q)c5K2d log(l)/u2

. (17)

For small u, we directly quote the result of equation (3.10) in

[7] as:

small u: N (Ds,q
1 , ‖ · ‖X , u) ≤ L(s, q)

(
u + K

√
d

u

)s

,

(18)

where L(s, q) =
∑s

j=1(
q
j

) ≤ (c6
q
s )s. Suppose A is the

boundary between big u and small u and denote K
√

d by J .

Then there is:∫ k
√

d

0

log0.5 N(Ds,q
1 , ‖ · ‖X , u)du

≤
∫ A

0

c6 log
1
2

(
q

s

u + J

u

)s

+
∫ J

A

log
1
2 (4q)

c5J2 log(l)
u2 du

≤ c7

∫ A

0

√
s log

q

s
+

√
s log

J

u
+
∫ J

A

J
√

log l log q

u
du

≤ c8

[√
sA(

√
log

q

s
+ log

A + J

A
) + J log

J

A

√
log l

√
log q

]
(19)

If we choose A as K
√

d√
s

, the right side of the last inequality

in (19) can be approximated by

c8K
√

d

(√
log

q

s
+ log

√
s + log(s)

√
log l

√
log q

)
.

Obviously, both
√

log q
s and log

√
s are ignorable compared to

log(s)
√

log l
√

log q. Thus the above expression can be reduced

to

c9K
√

d log(s)
√

log l
√

log q. (20)

Combining (20) with (13) and (9), we can conclude

w(l) = O(K
√

sd log(s)
√

log l
√

log q),

which completes the proof of Lemma.1.

Let Φ be the N × N discrete Fourier transform (DFT)

matrix, {τi}1≤i≤N be the sequence of Bernoulli random

variables where each τi takes the value 1 with probability

M/N , and Ω denote the set

Ω = {i ∈ 1, . . . , N |τi = 1}. (21)

Theorem 1: Let Ω, E|Ω| = M , be the random set as defined

in (21), and Φ be the N × N DFT matrix. Suppose that

we construct our measurement matrix F as F = ΦΩ, where

ΦΩ denotes the |Ω| × N matrix that consists of the rows

of Φ indexed by Ω. Further assume that δs|B is the block

RIP constant of the order s over B = {b1, . . . ,bq|N =
qd,L(bi) = d}. Then if

M ≥ C
sd log q

ε2
log

sd log q

ε2
log2 s (22)

for some constant ε ≤ 1 and C, δ4s|B will be less than 0.5
with probability being greater than 1−5e−ct, where t = 1/ε2

and c is some constant.

Proof: 1 According to Definition 3, it is easy to perform

the following formulations:

δs|B = sup
|R|≤s|B

‖v‖2

∣∣∣∣ 1
C
‖FRv‖2 − ‖v‖2

∣∣∣∣
= sup

|R|≤s|B
‖v‖2 |C1 < F′

RFRv,v > − < v,v >|

= sup
|R|≤s|B

‖v‖2 |< (C1F′
RFR − IR)v,v >| (23)

where C1 = 1/C, F′ is the transpose of F, FR is the

matrix that compose the columns of F indexed by R, and IR

represents the identity operator which has the same dimension

as F′
RFR. According to Cauchy-Schwarz inequality, we have

|< (C1F′
RFR − IR)v,v >| ≤ ‖C1F′

RFR − IR‖p‖v‖2. (24)

Substituting (24) into (23), we conclude

δs|B = inf
C1>0

sup
|R|≤s|B

‖C1F′
RFR − IR‖p. (25)

1The following proof also relies on [7], but we made many modifications
to fit our block sparse framework better.
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Let {f1, . . . , fl} and l = EΩ be the columns of F′. Then fR
i

is the i-th column of F′
R and we have

F′
RFR = [fR

1 , . . . , fR
l ]

⎡
⎢⎣ (f ′1)

R

...

(f ′l )
R

⎤
⎥⎦

= [fR
1 ,0, . . . ,0]

⎡
⎢⎢⎢⎣

(f ′1)
R

0
...

0

⎤
⎥⎥⎥⎦+ . . . + [0, . . . ,0, fR

l ]

⎡
⎢⎢⎢⎣

0
...

0
(f ′l )

R

⎤
⎥⎥⎥⎦

=
i=l∑
i=1

fR
i ⊗ fR

i , (26)

where the symbol ⊗ denotes tensor operator and f ′i represents

the transpose of fi. Substituting (26) into (25), we have

δs|B = inf
C1>0

sup
|R|≤s|B

‖C1

i=l∑
i=1

fR
i ⊗ fR

i − IR‖. (27)

Let {yi}1≤i≤N be the rows of Φ and xi =
√

Nyi. Since DFT

matrix Φ is itself an orthogonal matrix, we have

I =
N∑

i=1

yi ⊗ yi =
1
N

N∑
i=1

xi ⊗ xi =⇒ IR =
1
N

N∑
i=1

xR
i ⊗ xR

i .

(28)

Combining (27) with (21) and according to Lemma 6.3 in

[12], we have

Eδs|B = E inf
C1>0

sup
|R|≤s|B

‖C1

∑
i∈Ω

yR
i ⊗ yR

i − IR‖

≤ E sup
|R|≤s|B

‖IR − 1
M

∑
i∈Ω

xR
i ⊗ xR

i ‖ (29)

≤ 2E sup
|R|≤s|B

‖ 1
M

∑
i∈Ω

εixR
i ⊗ xR

i ‖, (30)

where εi has the same definition as in Lemma 1. Denote

E sup|R|≤s|B ‖ 1
M

∑
i∈Ω εixR

i ⊗ xR
i ‖ in (30) by Q and apply

(7) to (30). Then we can directly use the result of [7] (see

Proof of Theorem 3.6 in [7]) to obtain

Q ≤ 2w(M)√
M

, (31)

provided that w(M)/
√

M ≤ 1/2. Suppose the right side of

(29) is bounded by ε. According to (31), we can solve M
from

2w(M)√
M

≤ ε and obtain M ≥ C1
sd log q

ε2 log sd log q
ε2 log2 s,

which proves (22).

Moreover, the proof of the probability P (δ4s|B ≤ 0.5) ≥
1 − 5e−c/ε2

is completely identical to Theorem 3.10 and

Theorem 3.11 of [7], and are omitted here. Therefore, we have

completed the proof of Theorem 1.

Remark 2: Obviously, (28) holds for all unit orthogonal ma-

trices. Therefore, according to Lemma 6.3 in [12], inequality

(30) also holds for any other unit orthogonal matrix. This

implies that if we replace Φ in Theorem 1 by other unit

orthogonal matrix, the theorem still holds.
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Fig. 1. Recovery rate of block
sparse signal using group norm
method and BP method.
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Fig. 2. Recovery rate of block sparse
signal using group norm method and
random sparse signal using BP method.

IV. SIMULATIONS

In this section, we will present two groups of comparative

experiments. In the first group, we compare the recovery rate

of group norm method (6) and basis pursuit(BP) method [13]

for the same set of block sparse signals. In the second group,

we compare the recovery rate of group norm method (6) and

BP method for a set of block sparse signals and a set of

random sparse signals respectively. In the experiments, we

let M = 45, N = 100 and generate measurement matrix

F as that in Theorem 1. For block sparse signal, we let block

size d = 5 and draw 1 ≤ k ≤ 40 nonzero entries from

zero-mean Gaussian distribution and divide them into blocks

which are chosen uniformly within set B = {b1, . . . ,bq|N =
qd,L(bi) = d}, where q = N/d = 20. For random sparse

signal, we choose its support uniformly at random within set

{1, · · · , N} with the support size k ranging from 1 to 40,

and let the nonzero entries in the support be randomly chosen

from zero-mean Gaussian distributions. We repeat each group

of experiments for each sparsity level k ranging from 1 to 40

over 2000 independent trials. Simulation results are showed in

Fig. 1 and Fig. 2, where the red curve and blue curve in Fig. 1

represent group norm method and BP method respectively,

while red curve and green curve in Fig. 2 correspond to

recovery of block sparse signal and random sparse signal

respectively.

In Fig. 1, We can easily see that the red curve is roughly

constant over the block size d, therefore the performance of

group norm method is better than BP method when recovery

rate is higher than approximately 0.3. In Fig. 2, the results

show that the performance of recovering block sparse signal

is obviously better than recovering the signal without any

structure.

V. CONCLUSIONS

In this paper, we extended the block RIP from Gaussian

measurements to Fourier measurements and proved that the

minimum number of Fourier measurements can be as low

as O
(
sd log q log sd log q log2 s

)
. In contrast, under the same

condition, the minimum number of measurements for standard

RIP is O
(
sd log N log sd log N log2 sd

)
, which is obviously

greater than block RIP case.
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