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ABSTRACT

This paper proposes a scheme for the recovery of a uniformly
sampled sequence from the output of a time-interleaved
analog-to-digital converter (TI-ADC) with static time-skew
errors and missing samples. Nonuniform sampling occurs
due to timing mismatches between the individual channel
ADCs and also due to missing input samples as some of the
sampling instants are reserved for estimating the mismatches
in the TI-ADC. In addition to using a non-recursive structure,
the proposed reconstruction scheme supports online recon-
figurability and reduces the computational complexity of the
reconstructor as compared to a previous solution.

Index Terms— Nonuniform sampling, time-interleaved
ADC, reconstruction, timing mismatch, FIR

1. INTRODUCTION

Time-interleaved analog-to-digital converters (TI-ADCs)
support high sampling rates by interleaving the outputs from
multiple parallel channel ADCs [1]. The individual channel
ADCs in an M-channel TI-ADC operate at a rate that is M
times lower than the TI-ADC output rate. However, mis-
matches between the channel ADCs degrade the achievable
SNDR at the output of the TI-ADC.

Several papers have addressed the problem of utilizing
digital reconstructors at the output of the TI-ADC, to cor-
rect the errors introduced due to the mismatches [2–5]. How-
ever, the digital reconstructors require an estimator to esti-
mate the various mismatch parameters like gain, offset, and
timing mismatches. Estimators can be classified as either
foreground or background estimators. While foreground es-
timators interrupt the normal operation of the TI-ADC, they
achieve better convergence compared to background estima-
tors which rely on blind techniques for estimating the mis-
match, and hence, do not interrupt the normal operation of
the TI-ADC.

Recently, an iterative online calibration scheme was pro-
posed in [6] where the estimation was performed by injecting
a known calibration signal to the TI-ADC input at predefined
sampling instants. The samples at the output of the TI-ADC

which correspond to the calibration signal are utilized to esti-
mate the mismatch parameters. The sampling instants, where
the calibration signal is inserted, are selected such that the in-
put to the estimator contains output samples from all the chan-
nel ADCs. Since some of the sampling instants are reserved
for the calibration signal, the TI-ADC input is not sampled at
certain sampling instants. In order to recover the missing in-
put samples as well as compensate for the time-skew error be-
tween the channel ADCs, an iterative reconstruction scheme
using a recursive structure was proposed in [6]

In this paper, we propose a reconfigurable reconstruction
scheme that corrects timing mismatches in the presence of
missing samples without using recursive structures. This pa-
per focuses on correction of static timing mismatches which
is appropriate for TI-ADCs with moderate sampling frequen-
cies and/or resolutions. Also, for the proposed reconstructor,
the computational complexity which is measured in terms of
the number of multiplications required to correct an output
sample, is substantially lower than that of the reconstructor
in [6]. Immediately following this introduction, in Section 2,
we briefly review the basics of reconstruction in the presence
of missing samples. In Section 3, we introduce the proposed
reconstructor and illustrate the savings obtained with the help
of a design example in Section 4. Section 5 concludes the
paper.

2. PREREQUISITES

Uniform sampling of a continuous-time signal, xa(t), results
in an output sequence x(n) = xa(nT ), where T is the sampling
period. In order to ensure that the output of a TI-ADC is the
uniformly sampled version of the input signal, the time-skews
between the sampling clocks of the channel ADCs should be
uniform. Due to nonuniform time skews, the output of the
TI-ADC, v(n), will be a nonuniformly sampled version of the
input such that

v(n) = xa(nT + εnT ) (1)

where εnT represents, for the nth sample, the deviation of the
actual sampling instant from the uniform sampling instant nT .
Throughout this paper, we assume that T = 1 for simplicity.
In an M-channel TI-ADC, it can be assumed that the chan-
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Fig. 1. Nonuniformly sampled sequence at the output of a
three-channel TI-ADC with missing samples.

nel time-skew errors remain the same for a set of samples.
This implies that the time-skew errors are M-periodic such
that εn = εn+M resulting in an M-periodic nonuniformly sam-
pled sequence at the output of the TI-ADC.

In practice, TI-ADCs employ either foreground or back-
ground calibration techniques to estimate the time-skew er-
rors. The estimates are then used to reconstruct the uniformly
sampled sequence from the nonuniformly sampled sequence
at the output of the TI-ADC. An iterative online calibration
scheme was proposed in [6], where the estimation was per-
formed by injecting a known calibration signal ca(t) to the
TI-ADC input at predefined sampling instants t = rMc − 1
where r takes on integer values. Thus, every Mcth output
sample from the TI-ADC corresponds to a nonuniformly sam-
pled version of ca(t). The nonuniformly sampled calibration
sequence, c(r), is fed to an estimator which compares c(r)
with a known reference sequence, cre f (r) = ca(rMc−1), and
thereby estimates the mismatch between the channel ADCs.
To ensure that c(r) is composed of samples from all the chan-
nel ADCs, for an M-channel TI-ADC, Mc is chosen such
that Mc and M are co-prime. Unlike blind estimation tech-
niques which suffer from slow convergence rates, the estima-
tion technique in [6] provides faster convergence rate. How-
ever, as some of the sampling instants are reserved for the
calibration signal, the input to the reconstructor y(n) is given
by

y(n) =

{
0, n = rMc−1
v(n), otherwise.

(2)

Figure 1 illustrates the output y(n) in a three-channel TI-ADC
(M = 3) when every fourth sampling instant (Mc = 4) is used
to sample the calibration signal. Hence, in addition to cor-
recting the time-skew errors, the reconstructor used in such
TI-ADCs should also recover the missing samples. Due to
this, the complexity of the reconstructor will be higher than
the complexity of reconstructors which correct only the time-
skew errors. In [6], the reconstructor was realized using an
iterative scheme with good convergence rate. However, the
iterative scheme has a high computational complexity and
makes use of a recursive structure which, in addition to limit-
ing the maximum output rate [7] of the reconstructor, can also
cause stability problems.

Fig. 2. Reconstruction using analysis and synthesis filters.

3. PROPOSED RECONSTRUCTOR

The proposed reconstructor is realized using non-recursive
FIR structures, and thus, avoids the problems that can affect
recursive structures. We have observed that the problem of
reconstructing missing samples is similar to that of the recon-
struction problem in sub-Nyquist sampled sparse multi-band
signals considered in [8]. Assume that the whole Nyquist
band is divided into N sub-bands of equal width π/N. Then,
in the case of sparse multi-band signals, only K of the N
sub-bands are allocated to users. For such sparse multi-band
signals, one of the methods to reduce the average sampling
rate to the Landau minimal sampling rate is through cyclic
nonuniform sampling (CNUS) [9]. In CNUS, only a subset
x(Nn−m`), `= 1,2, . . . ,K, m` ∈ [0,1, . . . ,N−1], of the uni-
form samples x(n) are used. A reconstructor is then used to
recover the uniformly sampled sequence x(n) from the sub-
Nyquist sampled sequence x(Nn−m`). A practical imple-
mentation of the CNUS is an N-channel TI-ADC where only
K of the N channels are active. In [8], the reconstruction was
performed using a set of analysis and synthesis filter banks
(FBs) as shown in Fig. 2. Each analysis filter Bk(e jω), whose
N−K polyphase branches are equal to zero and which cor-
responds to the missing samples, extracts the signal from a
unique active sub-band. The extracted bandlimited signal is
then placed at the original active sub-band location at the out-
put sampling rate via the downsampler, upsampler, and band-
pass filter Ck(e jω). In the wideband TI-ADC reconstruction
problem considered here, the active sub-bands are contiguous
band locations starting from DC up to the maximum band-
width of the TI-ADC, ω0, which is typically 80–90% of the
Nyquist band.

In the proposed reconstructor, each analysis filter Bk(e jω)
is designed such that, in addition to extracting the signal cor-
responding to the appropriate sub-band, each Bk(e jω) also
makes the extracted signal uniformly spaced by compensating
for the channel time-skew errors. As can be seen from (2), the
samples in y(n) are MMc-periodically nonuniformly sampled
version of the input xa(t). Hence, the proposed reconstructor
will require K = N−M analysis and synthesis filters where
N = MMc.
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Fig. 3. Proposed reconfigurable reconstruction scheme.

3.1. Analysis Filters

The proposed reconstruction scheme is shown in Fig. 3. The
main difference between the reconstruction problem in TI-
ADCs and the sub-Nyquist sampling case in [8] is that, in TI-
ADCs, the sampling instants are non-integer multiples of T
while [8], which considered the main principle of reconstruct-
ing sub-Nyquist sampled signals, assumed that the sampling
instants are integer multiples of T . This implies that, here we
cannot directly utilize the polyphase components of the anal-
ysis filters Bk(e jω). Instead, an extension of the polyphase
representation is used to express the frequency response of
the analysis filters Bk(e jω) as

Bk(e jω) =
K

∑
`=1

e− jω(m`+ε`)Bkm`
(e jωN), ω ∈ [−π,π] (3)

where m` ∈ [0,1, . . . ,N− 1], ` = 1,2, . . . ,K, are the K input
sampling instants, and ε` is the time-skew error corresponding
to the sampling instant m`. Further, while the R.H.S. of (3) is
not 2π-periodic, Bk(e jω) is defined to be 2π-periodic. In a
full-length paper under way [10], we show that Bkm`

(e jω) are
generalized fractional-delay filters so that

Bkm`
(e jω)≈ βkm`

e j(ω(m`+ε`)/N+αkm`
sgn(ω)), ω ∈ [−π,π].

(4)
In (4), βkm`

and αkm`
are the modulus and angle, respectively,

of a corresponding complex constant ckm`
. It is shown in [10]

that the vector ck, containing all the K complex constants ckm`
,

m` ∈ [0,1, . . . ,N−1], `= 1,2, . . . ,K, can be determined using
matrix inversion as

ck = A−1bk. (5)

Here, A is a K×K matrix with elements an`m`
= e j2πn`(m`+ε`)/N ,

n` ∈ [0,±1, . . . ,N/2] if N is even or n` ∈ [0,±1, . . . ,±(N−
1)/2] if N is odd, m` ∈ [0,1, . . . ,N−1], `= 1,2, . . . ,K, deter-
mined by the K sampling points m` and the K active bands n`.
Further, one of the elements of bk is unity, its position being
determined by the active band n`. The remaining elements in
bk are zero.

3.1.1. Reconfigurability

In order to make the reconstructor online reconfigurable with-
out any redesign, the polyphase branches of Bk(e jω) are im-
plemented using the structure in [11] so that Bkm`

(e jω) in (4)
are expressed as

Bkm`
(e jω) = γkm`

F(e jω ,d`/N)+ζkm`
G(e jω ,d`/N) (6)

where γkm`
= βkm`

cos(θkm`
), ζkm`

= βkm`
sin(θkm`

), θkm`
=

αkm`
+π/41, and d`=m`+ε`. As shown in [11], F(e jω ,d`/N)

and G(e jω ,d`/N) can be realized in terms of a polynomial
FIR structure with L+ 1 fixed subfilters Fq(z) and Gq(z), re-
spectively, each weighted with (d`/N)q,q = 0,1, . . . ,L. Thus,
all the Bkm`

(e jω) are expressed using a common set of fixed
subfilters Fq(e jω) and Gq(e jω) since (4) can be rewritten as

Bkm`
(e jω)= γkm`

L

∑
q=0

(
d`
N

)q

Fq(e jω)+ζkm`

L

∑
q=0

(
d`
N

)q

Gq(e jω).

(7)
The different polyphase branches can be obtained via differ-
ent sets of values for γkm`

, ζkm`
, and d`. Also, when the time-

skew errors change, only the general multipliers correspond-
ing to γkm`

, ζkm`
, and d` need to be updated with the corre-

sponding new values.

3.2. Synthesis Filters

As in [8], the fixed bandpass synthesis filters Ck(e jω) can be
efficiently realized using a cosine modulated FB. The proto-
type filter is a lowpass filter with cutoff frequency at π/2N
[12]. Thus, the overall complexity of the synthesis FB corre-
spond to that of the prototype filter plus the cost of a real or
complex transform block. A fast-transform algorithm can be
used to make the cost of such a transform block low compared
to the cost of the filters.

1The additional phase shift of π/4 is required to match the analysis and
synthesis FBs since the subbands in the passband region overlap and because
we use cosine modulated FBs. It is similar to using additional phase constants
that are used for matching in conventional cosine modulated FBs [12].
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3.3. Reconstructor Design

The Fourier transform (FT) of the reconstructed output x̃(n)
can be expressed in terms of the FT of x(n), i.e., X(e jω), as

X̃(e jω) =V0(e jω)X(e jω)+
N−1

∑
p=1

Vp(e jω)X(e j(ω−2π p/N)) (8)

where V0(e jω) is the distortion function and Vp(e jω), p =
1,2, . . . ,N−1 are the aliasing functions with

Vp(e jω) =
1
N

K

∑
k=1

Bk(e j(ω−2π p/N))Ck(e jω) (9)

for p = 0,1, . . . ,N− 1. To have near perfect reconstruction,
the distortion term and the aliasing terms in (8) should ap-
proximate unity and zero, respectively, in the passband region
ω ∈ [−ω0, ω0]. Since the 2(L+1) subfilters in (7) are fixed,
whenever the time-skew errors change, it suffices to redeter-
mine the complex coefficients ck which, as in (5), can be done
using matrix inversion. The coefficients of the 2(L+1) fixed
subfilters, Fq(e jω) and Gq(e jω), are determined offline such
that the distortion and aliasing functions approximate unity
and zero, respectively, in the passband ω ∈ [−ω0, ω0] with
certain tolerances δ0 and δ1 according to

|V0(e jω)−1| ≤ δ0, ω ∈ [−ω0, ω0], (10)

|Vp(e jω)| ≤ δ1, ω ∈Ωp (11)

for p = 1,2, . . . ,N− 1. Here, Ωp represents the shifted ver-
sions of the passband that fall into the band [−π, π].

4. DESIGN EXAMPLE

In this section, in order to illustrate the savings obtained by
using the proposed reconstructor, we use the four-channel TI-
ADC (M = 4) case considered in Example A in Section VI
of [6]. Hence, it is assumed that the timing mismatches in
the channel ADCs are ε0 = 0.01, ε1 =−0.05, ε2 = 0.04, and
ε3 = −0.03, and the bandwidth of the reconstructor, ω0, is
0.8π . Also, as in [6], we assume that every seventh sample
is used by the estimator, i.e., Mc = 7. Thus, for the proposed
reconstructor, N = 28, K = 24, and the input sampling instants
are m` = {[0 : 5], [7 : 12], [14 : 19], [21 : 26]}.

The reconstructor was designed such that, after recon-
struction, the aliasing terms are below −50 dB which cor-
responds to three iterations of the reconstructor in [6] as can
be seen from Fig. 9(c) in [6]. At first, the prototype filter for
the fixed synthesis FB was designed to be a power-symmetric
lowpass filter of order 400 and cutoff frequency at 0.6π/56.
To keep the aliasing terms below −50 dB, the reconfigurable
analysis filters require 10 subfilters (L = 4), Fq(z) and Gq(z),
each of order 20. Thus, for the proposed method, the over-
all order of the reconstructor is 960. However, the computa-
tional complexity measured in terms of the number of mul-
tiplications per output sample is only around 75 assuming a
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Fig. 4. Spectrum before and after reconstruction using the
reconstructor in the design example.

straight-forward implementation of the transform block. On
the other hand, the iterative reconstructor in [6] would require
a reconstructor of order 396. The structure in [6] requires
36 general multipliers operating at the input/output rate while
the proposed structure requires 48 general multipliers at the
input/output rate. In [6], for every block of seven output sam-
ples, the VDF subfilters operate only on six samples while
a highpass filter is required for one of the seven samples.
Hence, the average computation complexity is around 550
multiplications per output sample. It can be seen that, while
the overall order of the proposed reconstructor is higher com-
pared to the structure in [6], it requires significantly fewer
multiplications per corrected output sample. Also, due to its
non-recursive structure, the proposed method is free from sta-
bility issues that can affect the iterative reconstructor in [6].
Also, in [6], the use of recursive structure limits the maxi-
mum rate at which the reconstructor can operate [7]. Like
in [6], the performance of the reconstructor is evaluated by
passing a multi-tone sinusoidal input x(n) = ∑

10
r=1 sin(nωr),

where ωr = 2πr/25. The spectrum of the nonuniformly sam-
pled TI-ADC output with missing samples, y(n), and that of
the reconstructed sequence, x̃(n) is shown in Fig. 4.

5. CONCLUSION

This paper proposed a reconstruction scheme for the recov-
ery of a uniformly sampled sequence from the output of a
TI-ADC with static time-skew errors and missing samples.
In order to reduce the computational complexity, the whole
Nyquist band was divided into a number of subbands due to
which we could describe the reconstruction in terms of analy-
sis and synthesis FBs. Also, for reconfigurability, polynomial
FIR filters with fixed subfilters were used to realize the anal-
ysis FB. With the help of a design example, it was shown that
the proposed reconstructor gives significant savings in com-
putational complexity.
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