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ABSTRACT

A new method for selecting a sentence set with a desired phoneme
distribution is presented. Selection of a sentence set for speech cor-
pus recording is a fundamental step in speech processing research.
The problem of designing phonetically-balanced sentence sets has
been studied extensively in the past. One of the popular approaches
is to select a sentence set so that its phoneme distribution gets close
to a given (desired) distribution. Several methods have been pro-
posed in the literature to realize this approach. However, these meth-
ods were designed by heuristics, which means they are not optimal.
In this paper, we propose a near-optimal method for selecting sen-
tence sets along this approach. We first define our objective func-
tion, and show it to be a submodular function. Then, we show that
a greedy algorithm is near-optimal for this problem, according to
the submodular optimization theory. We also show that a signifi-
cant speedup is possible by exploiting the submodularity of the ob-
jective function. Our experimental result on Japanese phonetically-
balanced sentence set selection shows the effectiveness of the pro-
posed method.

Index Terms— Corpus design, phoneme distribution, Kullback-
Leibler divergence, submodular optimization, speech recognition
and synthesis

1. INTRODUCTION

Designing a phonetically-balanced sentence set for recording a
speech corpus is a fundamental step in developing speech process-
ing systems. For instance, in order to record a speech corpus for
building a speech recognition (or synthesis) system, a sentence set
to be read by the narrators should be designed firstly. Phonetically-
balanced sentence sets are preferred for building statistical models
of speech, while at the same time smaller sets are preferred for
reducing the recording cost.

Various techniques for making a phonetically-balanced sentence
set have been proposed in the literature. The problem is usually for-
mulated as selecting the best subset from a given sentence set under
a given budget (e.g. a given number of sentences). One of the old-
est examples is the entropy maximization method [1]; the phonetic-
balancedness of a sentence set is measured by the entropy (i.e. uni-
formness) of its phoneme distribution; after randomly selecting an
initial set of sentences from a given pool of sentences, the entropy
is maximized by iteratively swapping randomly selected sentence
pairs (one from the sentence set and the other from the pool). More
recent example is the Kullback-Leibler (KL) divergence minimiza-
tion approach [2]; given a desired phoneme distribution and a sen-
tence pool, sentences are selected from the pool so that the phoneme
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distribution of the selected sentences gets closest, in a KL diver-
gence sense, to the given distribution; a simple heuristic algorithm
was used to minimize the divergence. A similar approach was also
adopted in [3], where mathematically the same problem was consid-
ered for selecting sentences with a desired i-vector distribution; that
is, sentences were selected so that the the i-vector distribution gets
closest to the given distribution; another simple heuristic algorithm,
originally developed for language model adaptation by minimizing
the KL divergence between n-gram distributions [4], was utilized to
minimize the divergence.

These algorithms are not necessarily optimal for minimizing (or
maximizing) the respective objective functions. For instance, the
swapping method [1] is optimal only if a sufficient number of swap-
pings are carried out; however, to build a sentence set of a practi-
cal size, the algorithm should be stopped way before convergence,
which makes the algorithm non-optimal. The algorithm used in [3]
and [4] takes each sentence in a given sentence pool in a random or-
der, and adopts it (adds the sentence to the set) if the KL divergence
gets smaller, or discards it otherwise. The algorithm is simple and
fast, but clearly not optimal.

The current paper proposes a provably near-optimal algorithm
for building a phonetically-balanced sentence set. We first de-
fine the “utility” of a sentence set as the weighted sum of the
log-frequencies' of the phonemes, where the weights are defined
according to the desired phoneme distribution. The utility can be
interpreted as saying there is no data like more and balanced data.
Then, we show that our objective function (the utility) has a special
property called submodularity. We show that a greedy algorithm
is provably near-optimal for solving this problem, according to the
submodular optimization theory. We further show that a significant
speedup of the greedy algorithm is possible by exploiting the sub-
modularity of the objective function. It is also shown, under some
mild conditions, that the sentence set build in this way is equivalent
with the one that minimizes the KL divergence to the desired dis-
tribution. Finally, a simple experimental result is given to show the
validity of the theory.

2. RELATED WORK

For recording speech corpora intended to be used for building speech
synthesis systems, algorithms to find the smallest sentence set that
covers all of the given phoneme set (e.g. diphones) have been used.
This problem is known as the set-cover problem, which can be
solved efficiently by a simple greedy algorithm. It is known that the

!'Throughout this paper, the term “frequency” means the absolute fre-
quency (count of an event), not the relative frequency (probability of an
event).



greedy algorithm is near-optimal for solving the set-cover problem.
Notable algorithms in this line include [5, 6]. For larger corpora,
mainly intended to be used for training acoustic models of speech
recognition systems, the set-cover objective is not suitable. Instead,
algorithms to find phonetically-balanced sentence set are preferred.
Examples in this line include [1, 7, 2, 8, 9]. We focus on the latter
case in this paper.

Submodular optimization [10, 11] is attracting much attention
these days. For instance, many tutorials are held at major confer-
ences, including ICML2008 and ICML2013. The technique can be
applied to wide variety of problems, for instance outbreak detection
in water networks and the web [12]. Submodularity in discrete op-
timization is similar to convexity in continuous optimization, and is
the key to use powerful optimization tools. Although the technique is
getting popular among machine learning researchers, it is not widely
known in the spoken language processing community yet, except
for a series of papers by Lin and Bilmes [13, 14]. To the best of our
knowledge, the submodular optimization techniques have never been
applied to the phonetically-balanced sentence set selection problem
in the literature.

3. METHODOLOGY

3.1. Problem statement

Given a sentence set U and a budget B, we want to select a subset
S of U so that the sentence set .S has maximum utility, while the
sentence set .S should not be too big to exceed the given budget. Let
J(S) be a set function to evaluate the utility of a sentence set S, we
formulate the sentence set selection problem as follows,

* . <
S arg max J(S) subject to éc(s) < B, (1)

where c(s) is the cost of sentence s. For instance if we set unit cost
for all the sentences, c(s) = 1, then the constraint means that at
most B sentences can be selected. Namely, in the unit-cost case, the
problem reduces to

Y= subj <B.
S arg max J(S) subjectto |S| < B (2)

On the other hand, distinct costs can be set to different sentences.
For instance, setting higher costs to longer sentences is reasonable.

3.2. Objective function

Let P be the set of phonemes. For instance, if context-independent
phonemes (monophones) are used, P consists of some 50 phonemes.
Alternatively, if triphones are used, P consists of some 5,000
(context-dependent) phonemes. Let m = (m1,...,mp|) be the
desired distribution of phonemes, where m; represents the proba-
bility of the i-th phoneme, and f;(S) be the frequency of the i-th
phoneme in S.

Under these notations, we define the utility of a sentence set .S
as follows,

|P|

J(S) = > milog fi(S). 3)
=1

The design concept for this utility is as follows. First, we want the
utility to be a linear combination of the log-frequencies of phonemes.
This idea is based on an empirical knowledge that the utility of data
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is proportional to logarithm of its amount. The weights for the lin-
ear combination is set as the desired probability of each phoneme.
This is intended to represent the expected utility under the desired
phoneme distribution 7.

3.3. Interpretation of the objective function

Utility function J(S) can be interpreted as saying that there is no
data like more and balanced data. In the following, we describe this
interpretation in detail. First, let us define the balancedness of the
sentence set as the KL divergence from the desired distribution, that
is,

|P|

def T
Dx(r || p(S)) = ;m log m 4
|P|
= - Z 75 log pi (S) + Const. %)
i=1

where we defined p; (S) as the probability of the i-th phoneme in S,

_ fiS)
fr(S)

Here, fr(S) is the total frequency, defined by >, f:(S). Then, we
have

pi(5) ©)

Dx(m || p(S))

— Z m; log }c;((?) + Const (@)

—> " milog £i(S) + log fr(S) + Const. (8)

By re-arranging the terms, we get
J(S) =log fr(S) — Dxu( || p(S)) + Const. )

The meanings of the respective terms are as follows:
e J(S): Utility of the data
e log fr(S): Amount of the data (in log-scale)
o Dk (7 || p(S)): Imbalancedness of the data

So the equation is saying that the utility of a data set is the sum of its
amount and balancedness. In other words, there is no data like more
and balanced data.

3.4. Submodularity

A set function J(-) is said to be submodular if it satisfies the follow-
ing inequality forall S C T C U and s € U\T,

J(SU{s}) = J(S) =2 J(T'U{s}) — J(T). (10)

In the context of sentence set selection, this inequality means that
adding a sentence s to a smaller set S brings a larger gain (i.e. ad-
ditional utility) than adding it to a larger set 7". In other words, it is
representing the law of diminishing returns.

Next, we show that the objective function J(.5) defined in (3) is
submodular. We use the following inequality that holds for 0 < z <
yand 0 < d,

log(z + d) — log(x) > log(y 4+ d) — log(y). (11)



This implies that the following inequality holds for all ¢,

log fi(S U {s}) — log fi(S) > log fi(T U {s}) — log fi(T)(~12)

Since 7; is non-negative for all ¢, we get
J(SU{s}) = J(S) = J(TU{s}) — J(T), (13)

which means that our objective function J(.S) is submodular.

3.5. Greedy algorithm
3.5.1. Unit-cost case

The problem of searching the best sentence set to maximize the util-
ity is a combinatorial problem, and is known to be NP hard. So we
have to resort to some approximate algorithm to find a solution that
is not too far from the best possible one. It is known that the greedy
algorithm is a near-optimal algorithm for solving the submodular
maximization problem under the unit-cost constraint (¢(s) = 1). In
other words, no other polynomial-time algorithm can have a better
bound than the greedy algorithm. Formally speaking, the following
theorem is known.

Theorem [15, 16] If J(-) is a nonnegative, monotone, sub-
modular function, the utility of the sentence set S™ found by
the greedy algorithm has the following lower bound, f(S*) >

(1 — 1/6) maX‘S‘SB f(S)

Algorithm 1 shows the greedy algorithm for selecting the opti-
mal sentence set. Starting from the empty set, for each iteration, the
algorithm selects the best sentence that maximizes the utility, and
stops when the given number of sentences are selected.

Algorithm 1 Sentence set selection with a greedy algorithm (unit
cost case)
Input: U, B, 7
S+ o
repeat
s" < argmaxcn g J (S U {s}) — J(S5)
S+ SuU{s*}
until | S| = B
Output: S

3.5.2. Non-unit-cost case

The greedy algorithm for the unit-cost case tends to select longer
sentences. However, reading longer sentences usually costs more
than to read shorter sentences. When the given sentence set U con-
tains sentences of various length, the sentence set found by the al-
gorithm may lead to a high recording cost. So setting different cost
to each sentence is preferable in such a situation. A variant of the
greedy algorithm proposed in [16] can be used for the non-unit-cost
case. A pseudo code is given in Algorithm 2 2. The algorithm gives
a bound of

« 1 1
15025 (17 1) g, SO a9

2To avoid clutter, we show an algorithm that returns a solution that
slightly exceeds the budget. It is straightforward to modify the algorithm
to get a solution strictly meeting the budget.
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Note that there is an algorithm with a better bound [17],i.e. 1 —1/e,
but the algorithm is much more complex, and does not scale to large
problems.

Algorithm 2 Sentence set selection with a greedy algorithm (non-
unit-cost case)

Input: U, B, =

//Unit-cost

Suc < ¢

while > ¢ c(s) < Bdo
8" <= argmaxsen s, J (Sue U {s}) — J(Suc)
Sue  Suc U {s*}

end while

//Cost-benefit

Scb — ¢

while - c(s) < Bdo
J(ScpU{s})—J(Scp)

N
8" < argmaxscy\ s, ()

Sep < Sep U {S*}
end while

Output: arg max{.J(Suc), J(Ses)}

3.6. Speeding-up

The greedy algorithms for selecting sentence set presented in Algo-
rithms 1 and 2 are not very fast. A much faster alternative, called the
lazy greedy algorithm, proposed in [16], can be used instead. The
main idea is that the number of function evaluations can be reduced
dramatically by exploiting submodularity. This speeding-up tech-
nique can be used to both of the unit-cost and non-unit-cost cases.
In [16], a problem of sensor placement was considered; specifically,
a strategy for selecting an optimal subset from a given set of possi-
ble sensor placement locations was studied. In their experiment, a
speed-up by a factor of 700 was realized by using the lazy greedy
algorithm, instead of the standard greedy algorithm. The sentence
set selection problem considered in the present paper can be solved
very quickly in the same manner as well. In our experiments, this
speeding-up technique is used with a non-unit-cost formulation.

3.7. Equivalence with KL minimization

We show, under some mild conditions, that the sentence set found by
the greedy algorithm presented in the previous section is equivalent
with the sentence set that has the minimum KL divergence from the
given distribution 7.

First, let us study the unit-cost case. The sentence set selected
by our algorithm is the one that (approximately) maximizes J(S)
among all possible sets of sentences S C U with the given size
|S| = B. Suppose that the length of each sentence (i.e. the length of
the phoneme sequence representing the sentence) in U is (roughly)
constant. This assumption is realistic in many situations; for in-
stance, sentences for corpus recordings are usually arranged to be
roughly the same length for the sake of readability. Let the con-
stant length be denoted by L. Then, the constraint |S| = B implies
fr(S) = BL. That is, log fr(S) is constant for all S under this
setting. Therefore, the sentence set S* that maximizes J(S) is the
minimizer of the KL divergence Dk (7 || p(S)) among all S C U
with the given size B. For the case of non-unit-cost, if we use a con-
straint log f7(S) = B, the same argument as above can be made.



4. EXPERIMENTAL RESULT

We have compared our proposed algorithm of sentence selection
with a random selection algorithm. As the sentence set U from
which sentences are to be selected, we have used a set of 248,530
Japanese sentences internally collected from various sources, such
as news papers and novels. The average number of phonemes per
sentence was about 21. A total of 4,911 distinct triphones appeared
in U were used as the phoneme set P. We have selected a sentence
set S with our proposed greedy algorithm at a budget of 400,000
phonemes, that is, we used the length (number of phonemes) of a
sentence as the cost ¢(s). In this experiment, the uniform distribution
was used as the target distribution 7, because the result can be un-
derstood easily (the flatter distribution is better), although arbitrary
distributions can be used as the target. On the other hand, for com-
parison, we have randomly selected sentences at the same budget,
and obtained a sentence set consisting of 18,939 sentences. Figure 1
shows the frequencies (in log scale) of the phonemes (triphones) for
the two cases. It can be seen from the figure that the sentence set
given by the proposed algorithm is flatter, that is, closer to the uni-
form distribution. The sentence set collected with the proposed algo-
rithm has higher frequencies, especially at the rare triphones. This
is a preferable property of a sentence set because speech corpora
based on such a sentence set are suitable for building acoustic mod-
els for speech recognition (or synthesis), which are especially good
at recognizing (or synthesizing) those rare triphones. Our C++ im-
plementation of the greedy algorithm selected 18,989 sentences in
just 237 seconds.
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Fig. 1. Comparison of the proposed algorithm and the random se-
lection algorithm.

5. CONCLUSIONS

A new method for selecting phonetically-balanced sentence sets was
proposed. The problem of sentence set selection was formulated as
a set function maximization problem with a constraint (budget). We
first defined our objective function that measures the utility of a sen-
tence set. The objective function can be interpreted as saying that the
utility of a sentence set is the sum of its amount and balancedness;
in other words, there is no data like more and balanced data. We
have then shown that our objective function is submodular, and that
the objective function can be maximized efficiently by a greedy al-
gorithm. An experimental result in selecting some 19,000 sentences
out of 248,530 have shown the effectiveness of the proposed algo-
rithm.
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