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ABSTRACT

Recurrent neural networks (RNNs) have recently produced record
setting performance in language modeling and word-labeling tasks.
In the word-labeling task, the RNN is used analogously to the more
traditional conditional random field (CRF) to assign a label to each
word in an input sequence, and has been shown to significantly out-
perform CRFs. In contrast to CRFs, RNNs operate in an online
fashion to assign labels as soon as a word is seen, rather than af-
ter seeing the whole word sequence. In this paper, we show that
the performance of an RNN tagger can be significantly improved by
incorporating elements of the CRF model; specifically, the explicit
modeling of output-label dependencies with transition features, its
global sequence-level objective function, and offline decoding. We
term the resulting model a “recurrent conditional random field” and
demonstrate its effectiveness on the ATIS travel domain dataset and
a variety of web-search language understanding datasets.

Index Terms— Conditional random fields, recurrent neural net-
works

1. INTRODUCTION

In recent years, Recurrent Neural Networks (RNNs) have demon-
strated outstanding performance in a variety of natural language pro-
cessing tasks [1–9]. In common with feed-forward neural networks
[10–14], an RNN maintains a representation for each word as a high-
dimensional real-valued vector. Critically, in this vector space, simi-
lar words tend to be close with each other, and relationships between
words are preserved [15]; thus, adjusting the model parameters to in-
crease the objective function for a training example which involves
a particular word tends to improve performance for similar words in
similar contexts.

In this paper, we focus on the use of RNNs in Spoken Language
Understanding (SLU). In classical SLU systems [16–22], one of the
key tasks is to label words with semantic meaning. For example, in
the sentence “I want to fly from Seattle to Paris,” the word “Seat-
tle” should be labeled as the departure-city of a trip, and “Paris”
as the arrival-city. Perhaps the most obvious approach to this task
is the use of Conditional Random Fields (CRFs) [23], in which an
exponential model is used to compute the probability of a label se-
quence given the input word sequence. A CRF produces the single,
globally most likely label sequence, and the model has been widely
used in SLU [20, 24, 25]. Other sequence labeling methods that
have been investigated include Maximum Entropy Markov Models
(MEMMs) [20, 26] and Machine Translation (MT) models [27].

Our current work improves upon the RNN language understand-
ing (RNN-LU) architecture of Yao et al. [7]. This architecture con-
sists of a layer of inputs connected to a set of hidden nodes; a fully
connected set of recurrent connections amongst the hidden nodes;

and a set of output nodes. In the SLU task, the inputs are the se-
quence of words, and the outputs are the sequence of semantic la-
bels. This basic architecture is illustrated in Figure 1 and described
in detail in Section 2.1.

While effective, the previous architecture does not explicitly
model the dependencies between semantic labels. For SLU, Mesnil
et al. [8] investigated another architecture, the Jordan architec-
ture [28], that feeds back the past predictions of labels to the hidden
layer. It is reported in [8] that incorporating such feedback im-
proves label accuracy. A second drawback to the basic RNN-LU
architecture is that it is optimized based on a tag-by-tag likelihood
as opposed to a sequence-level objective function. In common
with MEMM models, the RNN produces a sequence of locally-
normalized output distributions, one for each word position. Thus,
it can suffer from the same label bias [23] problem. To ameliorate
these problems, we propose to combine the RNN and CRF. The
combined model can be considered as an RNN that uses the CRF-
like sequence-level objective function or as a CRF that uses the RNN
activations as features. The whole model is jointly trained, taking
advantage of the sequence-level discrimination ability of a CRF and
the feature learning ability of an RNN. This model is illustrated in
Figures 3 and 4.

This approach is similar to the prior work of sentence-level neu-
ral networks proposed in [29, 30] and the NN-CRF fusion presented
in [31–34]. Whereas previous work used feed-forward or convolu-
tional networks, we propose to use an RNN. This is motivated by
the RNN’s demonstrated performance in word-labeling tasks [7, 8].
This approach is different from sequence-level training of deep neu-
ral networks (DNNs) for acoustic modeling in [35–37]: whereas
[35–37] use HMMs and DNNs, this work uses CRFs and RNNs.

2. BACKGROUND

2.1. Recurrent Neural Networks

The RNN-LU architecture is a feature-augmented [5] Elman archi-
tecture [38]. Figure 1 shows an example of the architecture “un-
rolled” across time to cover three consecutive word inputs. This ar-
chitecture consists of a feature layer, an input layer, a hidden layer
with recurrent connections, and an output layer. Each layer repre-
sents a set of neurons, and the layers are connected with weights.
The input layer w(t) represents input word at time t encoded us-
ing 1-of-N coding, and the feature layer f(t) can be used to encode
additional information such as topic, or dialog state. The feature
layer f(t) encodes side-information, and is connected to the hidden
layer with weights F and the output layer with weights G. Be-
sides of encoding topical information as in [5], the feature layer
can also be used to convey a redundant representation of the in-
put by using continuous-space vector representations of the words.
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Fig. 1. RNN language understanding architecture. An open circle
indicates that the value of the variable is given. Matrices are shown
in bold. w(t) represents word input; f(t) auxiliary features; z(t) the
output distribution prior to the soft-max; and y(t) the output label.

Such representations can be learned by a non-augmented network (in
which the input layer only connects to the hidden layer) as described
in [1, 7, 29].

The output layer y(t) produces a probability distribution over
labels. The hidden layer s(t) maintains a representation of the sen-
tence history. The input vector w(t) has a dimensionality equal to
the vocabulary size, and the output vector y(t) has a dimensionality
equal to the number of possible semantic labels. The values in the
hidden and output layers are computed as follows:

s(t) = f (Uw(t) +Ws(t−1) + Ff(t)) (1)

z(t) = Vs(t) +Gf(t), (2)

y(t) = g (z(t)) , (3)

where

f(z) =
1

1 + e−z
, g(zm(t)) =

ezm(t)∑
k e

zk(t)
. (4)

and U, W, F, V, and G are the connection weights. zm(t) is
the m-th element in the output layer activity before softmax; i.e.,
zm(t) = (Vs(t) +Gf(t))m. We find it useful to explicitly repre-
sent the activations before the softmax, as we will use these later in
the R-CRF.

This model uses an on-line decoding process that outputs the
likeliest semantic label based on only the past observations. Note
that this is optimal with respect to the model as there is no direct de-
pendence between output labels. The RNN model is trained with the
maximum conditional likelihood criterion, listed in Table 1. Its error
signal for error back-propagation is δ(y(t) = y?(t))− exp(zy(t)(t))∑

j exp(zj(t))
,

where y?(t) represents the correct label at position t.

2.2. Conditional Random Field

The recurrent neural network produces a position-by-position distri-
bution over output labels, and thus can suffer from the same label
bias problem as MEMMs and other locally normalized models. In
contrast to locally normalized models, a conditional random field
(CRF) [23], illustrated in Fig 2, is a sequence model consisting of
a single exponential model for the joint probability of the entire se-
quence of labels given the observation sequence. The joint probabil-
ity P (y(1 : T )|w(1 : T )) has the form

1

ZCRF
exp(

T∑
t=1

(
∑
m

λmfm(y(t−1), y(t))+
∑
k

µkgk(y(t),w(t)))),

(5)

Fig. 2. CRF.

where fm(y(t − 1), y(t)) is the m-th edge feature between labels
y(t− 1) and y(t). gk(y(t),w(t)) is the k-th vertex feature at posi-
tion t. ZCRF is for normalization. In the CRF, the edge and vertex
features are assumed to be given. For example, a Boolean vertex
feature gk might be true if the word at position t is upper case and
the label y(t) is “proper noun”. The CRF illustrated in Fig 2 is a
linear chain CRF (LC-CRF), which has dependence between labels
in neighboring positions. The Semi-Markov CRF (semi-CRF) [39],
which usually outperforms LC-CRF, uses a segment-level model,
grouping together multiple inputs and assigning a single output la-
bel.

3. RECURRENT CONDITIONAL RANDOM FIELD

3.1. Model

In the recurrent CRF model proposed here, an RNN is used to gen-
erate the input features for a CRF. This model has two variants as
illustrated in Figures 3 and 4. In both variants, the features used are
the RNN scores before softmax normalization; i.e., at each position
t for a label k, the new model uses zk(t) in Eq. (4). Using the activa-
tion before the softmax is important because the softmax normalizes
its input scores and can thus cause the label bias problem that exactly
motivates the CRF model. The same trick is also adopted in tandem
ASR systems [40].

Because this new model is a CRF with features generated from
an RNN, we call it a recurrent conditional random field (R-CRF). A
R-CRF naturally incorporates dependencies between semantic labels
via the CRF transition features. In Figure 4, we further connect the
past one-hot prediction to the hidden layer, similar to that in the Jor-
dan architecture. This prediction is the maximum of the distribution
over output labels at time t, given only the observations up to time
t. In this model, the one-hot predictions contribute to the subsequent
output layer via a non-linear hidden layer. As an alternative to these
models, we might use the maximum entropy features of Mikolov et
al. [4], which consist of features defined on ngrams of output labels.
However, we find that the max-entropy approach is not as effective
in the SLU task. Decoding in the R-CRF is done as in a CRF, with a
forward pass over all the words, followed by a backtrace.

Denote the dimensions of feature layer, hidden layer and output
layer respectively as F , H , and Y . The computational cost of the R-
CRF during training is O(HH +FH +HY +FY ) for each word.
The cost of Viterbi decoding isO(T (HH+FH+HY +FY )) for
a sequence with length T .

3.2. Objective Function

For simplicity of notation, we denote input-output pair sequence dur-
ing training as (w(1 : t),y(1 : t)). This can be easily generalized
to include the side feature inputs, for which we would then have
((w(1 : t), f(1 : t)),y(1 : t)).
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Fig. 3. R-CRF Model 1. An open circle indicates that the variable is
not generated by the model. For clarity, we have omitted the feature
inputs and connections.

Fig. 4. R-CRF Model 2. The one-hot prediction is connected to the
hidden layer in R-CRF model 2.

We slightly simplify the CRF definition of Eqn. (5) by absorbing
the weight µk associated with a feature gk into the feature itself, in
our case the weights in the final layer of the network. This allows us
to define µk to be 1 without a loss in generality. With this notation,
the objective function for a single training example is defined as

exp
∑T

t=1

(
ηay?(t−1)y?(t) + zy?(t)(t)

)∑
∀y(1:T ) exp

(∑T
t=1 ηay(t−1)y(t) + zy(t)(t)

) , (6)

where y?(1 : T ) = [y?(1) · · · y?(T )] denotes the correct label se-
quence. ay(t−1)y(t) is the transition feature from label y(t − 1) to
y(t), which can also be considered as the label transition weight in
log-scale. η ∈ R+ is a real value, usually set to 1.0. It is used to
weight the transition feature.

For clarity, table 1 summarizes the objective functions for RNN,
CRF, and R-CRF in log-scale. The RNN uses a word-level nor-
malization ZRNN (t) at position t. Both CRFs and R-CRFs use
sequence-level normalizations. Different from CRFs that combine
fixed and pre-defined vertex features gk(·) through linear combina-
tions, R-CRFs learn vertex features through recurrent and non-linear
transformations in RNNs.

To maximize the R-CRF objective function, the algorithm iter-
ates between a forward pass and a backward pass during training.
We now describe the training and decoding procedures, based on the
standard CRF recursions [23].

3.3. Training

The forward pass computes the scores along all possible input-label
pair sequences in the denominator in Eq. (6) and the score along the
correct input-label pair sequence. As shown in [23], the necessary
quantities can be computed with dynamic programming.

Table 1. Log-scale Objective Functions Q(θ) of RNN, CRF, and
R-CRF. RNN normalization is ZRNN (t) =

∑
k exp zk(t). CRF

normalization is ZCRF =
∑
∀y(1:T ) exp

∑T
t=1{

∑
m λmfm(y(t −

1), y(t)) +
∑

k µkgk(y(t),w(t))}. R-CRF normalization is

ZR−CRF =
∑
∀y(1:T ) exp

(∑T
t=1 ηay(t−1)y(t) + zy(t)(t)

)
.

RNN
T∑

t=1

(
zy?(t)(t)− logZRNN (t)

)
CRF

∑T
t=1{

∑
m λmfm(y?(t− 1), y?(t))

+
∑

k µkgk(y
?(t),w(t))} − logZCRF

R-CRF
T∑

t=1

(
ηay?(t−1)y?(t) + zy?(t)(t)

)
− logZR−CRF

Define α(t, i) as the sum of partial path scores ending at position
t, with label i. This can be computed as follows

α(t, i) = exp(zi(t))
∑
j

α(t− 1, j) exp(ηaji) (7)

The backward pass score β(t − 1, q) is defined as the sum of
partial path scores starting at position t−1, with label q and exclusive
of observation t− 1. It can be recursively computed [23] as

β(t− 1, q) =
∑
j

β(t, j) exp(ηaqj + zj(t)) (8)

With the above forward and backward scores, we can compute
gradients with respect to vertex feature zy(t)=k(t) at position t and
label y(t) = k as follows

∂Q(θ)

∂zy(t)=k(t)
= δ(y(t) = y?(t))− α(t, k)β(t, k)∑

j α(t, j)β(t, j)
(9)

With the above equation, we obtain the error signal for RNN at
each position t. The model then reuses the backpropagation proce-
dures for updating RNN parameters, except that the error signals are
now with (9).

To update the label transition weights, we compute gradients as
follows:

∂Q(θ)

∂aji
= η

∑
t

δ(y(t− 1) = j, y(t) = i) (10)

− η
∑
t

(
α(t− 1, j)β(t, i) exp(ηaji + zi(t))∑

j α(t, j)β(t, j)

)

The model parameters θ are updated using stochastic gradient
ascent (SGA) over the training data multiple passes.

4. EXPERIMENTS

4.1. Datasets

In order to evaluate the proposed model, we conducted two sets of
experiments. The first set of experiments used the widely used ATIS
dataset [16,41,42]. This dataset focuses on the air travel domain, and
consists of audio recordings of people making travel reservations. In
this database, each word in a sentence is labeled with a semantic tag.

The second set of data was obtained from Microsoft Bing’s in-
ternal query understanding system. It consists of search queries from
four domains: Restaurants, Movies, Flights, and Hotels. The tasks

4107



Table 2. Training and testing setups in ATIS and other domains.
ATIS Flights Restaurants Hotels Movies

# train words 56590 15695 28470 9159 19943
# test words 9198 4149 3047 2353 2258
# slots 128 42 32 36 38
Significance Level 0.44 0.93 1.2 1.3 1.7

Table 3. F1 score with different modeling techniques.
Flights Restaurants Hotels Movies

LC-CRF 88.58 85.63 85.80 75.70
semi-CRF 90.90 86.50 86.60 80.60
RNN 90.51 86.77 88.03 78.20
R-CRF Model 1 91.54 88.46 87.95 82.21
R-CRF Model 2 90.53 87.97 89.12 82.61

consist of labeling words with semantically-important tags such as
“director” or “genre” in the movie domain. Table 2 lists the number
of words in the training and test sets for all the datasets used in this
work. The numbers of distinct slot labels are also listed. In the last
row of Table 2 we show the amount of change in the F1 measure
necessary for the improvement to be significant at the significance
level of 95%.

4.2. Results on Bing Query Understanding Datasets

Table 3 lists the F1 scores achieved by the R-CRF models, together
with those from a linear-chain CRF (LC-CRF), semi-Markov CRF
(semi-CRF), and an RNN. The LC-CRF and semi-CRF models used
four types of features that were derived from regular expression
matches and context-free-grammar parses. The LC-CRF uses a
context window size of 5 and the semi-CRF uses a context window
size of 3, which includes left and right context. RNNs and R-CRFs
used these same features (by extending the sparse input representa-
tion w(t) with the additional information), with a context window
size of 2. These sizes and feature extraction are optimal for the
respective systems. The RNNs and R-CRFs also use SENNA word
embedding [29] as redundant input representations in the feature
layer. For comparison, we also applied word embedding to CRFs
in the movies domain and obtained small improvements and did not
exceed RNN’s result.

Referring to Table 3, we notice that the semi-CRF outperforms
the LC-CRF in all domains, because of its ability to model long-span
dependencies between labels. The RNN outperforms the LC-CRFs
in all domains, but only outperforms semi-CRFs in the restaurant
and hotel domains. However, with sequence-discriminative train-
ing and transition features, R-CRF Model 1 is able to outperform
semi-CRFs in all domains. The improvement is particularly signif-
icant in the movies and restaurants domains, because of the strong
dependencies between labels. For instance, a movie name has many
words and each of them has to have the same label of “movie name”.
Therefore, it is beneficial to incorporate dependencies between la-
bels, and train at the sequence level. Adding the feedback connec-
tions of Model 2 helps in some domains, but is not a consistent im-
provement.

In theory, the R-CRF has a computational cost that is between
LC-CRF and semi-CRF. Empirically, on the same machine, where
the average latencies of the LC-CRF and semi-CRF models are 0.1
ms and 3.8 ms, respectively, the latencies of the RNN and R-CRF
models are respectively 0.51ms and 0.53ms. The improvement in

Table 4. F1 score for the ATIS domain.
CRF RNN R-CRF Model 1 R-CRF Model 2
94.40 96.37 96.41 96.65

Table 5. Sources of R-CRF performance improvement (Movies).
RNN Train label transition only Full backpropagation to RNN
77.04 78.54 82.40

latency achieved by the R-CRF over the semi-CRF is especially sig-
nificant for long queries. For queries with 9 or more words, the
latency is reduced from 14.5ms to 1.2ms when we switch from the
semi-CRF to the R-CRF.

4.3. Results on the ATIS Dataset

Table 4 lists the results of different modeling techniques on the ATIS
set. The training features include word and named-entity informa-
tion as described in [43]. We use a context window of 3 for bag-of-
word feature [7]. RNN and R-CRF use 100-dimension hidden layer.
As shown in the table, the RNN significantly outperforms CRF, im-
proving F1 score from 94.4% by CRF to 96.4%. Using the R-CRF
produced the best F1 score of 96.7%, though the RNN-based models
all do very well on this task. This score is slightly higher than 96.6%
reported in [7] that, together with [8], shows that RNN-based meth-
ods outperform other methods [20, 43] including DNN-based [44].

4.4. Sources of Performance Improvement

Note that the R-CRF includes transition features as well as RNN fea-
tures. Hence, we conducted experiments to understand their relative
importance. Because of the large improvement of the R-CRF over
the RNN on the Movies task, we focus on that domain. As shown
in Table 5, the RNN has a 77.04% F1 score. This differs from Table
3 due to a different model configuration. Including the label tran-
sition weights, which model dependencies between slots, improved
the F1 score to 78.54%. When we updated RNN parameters in the R-
CRF, we observed a further improvement in the F1 score to 82.40%.
Therefore, much of the improvement can be attributed to the model-
ing in the RNN.

We also conducted experiments to determine the importance of
using word embeddings as a redundant input representation. All
models used a 200-dimension hidden layer. Without word embed-
dings, R-CRF Model 1 and Model 2 obtained F1 scores of 81.2%
and 83.2%, compared to 71.2% with a plain RNN. With word em-
beddings, R-CRF Model 1 and R-CRF Model 2 obtained 82.2% and
82.6%, compared with 76.6% for the RNN. These results show that
R-CRFs are less reliant on redundant input representations.

5. CONCLUSION

In this paper we have demonstrated that RNNs can be successfully
merged with CRFs to do language understanding. There are two
qualitative benefits from this merge. First, it naturally incorporates
the CRF’s global sequence-level optimization criterion that is more
appropriate for sequence-tagging problems. Second, the CRF tran-
sition features directly model interactions between the output labels.
Our experiments indicate that this new model outperforms linear-
chain CRFs, semi-CRFs, and RNNs.
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