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ABSTRACT

Intent detectors in state-of-the-art spoken language understanding
systems are often trained with a small number of manually anno-
tated examples collected from the application domain. Search query
logs provide a large number of unlabeled queries that would be ben-
eficial to improve such supervised classification. Furthermore, the
contents of user queries as well as the clicked URLs provide infor-
mation about user’s intent. In this paper, we propose a variational
Bayesian approach for modeling latent intents of user queries and
clicked URLs when available. We use this model to enhance super-
vised intent classification of user queries from conversational inter-
actions. Experiments were run with large volumes of search queries
and show significant improvements over state-of-the-art systems.

Index Terms— spoken language understanding, query click
logs, variational inference, graphical models, intent classification.

1. INTRODUCTION
In task-oriented dialog systems, the aim of the spoken language un-
derstanding (SLU) models is to automatically capture and tag the
semantic frames that include user intents and related concepts given
their utterances [1]. State-of-the-art SLU models are trained with ex-
amples collected for each domain and task, and manually annotated
according to a semantic schema, often designed for each one. Previ-
ous work mainly viewed SLU intent detection as an utterance clas-
sification task, and investigated various classification methods [2, 3,
4, 5, 6, 7, 8].

Intents of spoken queries to a dialog system may be classified
as informational, navigational, and transactional in a similar way to
the taxonomy for web search [9]. User utterances with navigational
intents aim to navigate in the dialog, such as “go back to the previous
results”, and can usually be shared across ontologies of similar dia-
log system applications. Utterances with informational intents aim
to seek an answer to questions, such as “find the movies of a certain
genre and director”. Answers to such queries are likely to be in-
cluded in knowledge repositories, such as Freebase1. The ontology
of the user intents for informational queries can be formed based on
the semantic web ontologies [10, 11, 12, 13], such as the ontology of
Freebase or schema.org2. Furthermore, the populated knowledge in
the graph can be used to mine examples that include surface forms
of entities and their relations in natural language [14, 15]. In our
previous work [15], for each relation type in the semantic graph, we
leveraged the complete set of entities that are connected to each other
with a specific relation, and mined surface form patterns from the
web that realize such relations in natural language sentences. These

∗The first author performed the work while at Microsoft.
1www.freebase.com
2http://www.schema.org

patterns are then used to detect relations in new user utterances to a
spoken dialog system.

Utterances with transactional intents aim to perform an opera-
tion, such as “play a movie”, or “reserve a table at a restaurant”.
The ontology of user intents for such queries are usually defined
by dialog system designers and developers, and are mainly driven
by the capabilities of the back-end applications. For Internet search
queries, they can also be mined from search queries [16].

Earlier work used the URLs that users click on from amongst
the search results to identify the intent of the user from their search
query [17, 18]. In our previous work [12], we proposed a click intent
model that uses search query click logs to discover new user intents
in addition to the ones that appear in the semantic graphs. Although
these models are efficient in capturing new user intents, they model
the entities and context words together, whereas these may play a
different role for intent detection. In this paper, we focus on entities
and context words in a given utterance along with the clicked URLs
and propose a novel click intent model to improve supervised intent
detection. Our contributions are: (i) joint modeling of entities, entity
types and context words in user utterances as aspects of utterances,
(ii) incorporating the entire URL and its components rather than just
the base URLs and (iii) using large amounts of search query click
logs in the new click intent model for improving supervised intent
classification.

In the following sections, we first provide examples motivating
our new model, and then present the new model and its variations.
In Section 4, we describe the inference for the new model. Then, we
present our analysis of the discovered latent clusters, followed by the
experimental results for intent detection and conclude.

2. MOTIVATION
We illustrate our motivation and main characteristics of the queries
and associated URLs with two sample utterances from web search:

(1) “find movies by James Cameron”
(2) “James Cameron”

Both of these queries are related to searching some information
about the director James Cameron. A significant difference between
the two examples with respect to intent understanding is that the
user’s intent is clear in example (1), whereas the intent of example
(2) is not as clear as the first one. This calls for additional informa-
tion to better understand the user’s intent. Specifically, if the clicked
URL points to, for example, the Wikipedia page of James Cameron,
it is likely that the user is looking for his biographical informa-
tion. Similarly, if the URL points to a page within the imdb.com
domain, then the user’s intent is most likely similar to example (1).
Furthermore, in order to obtain a better understanding about users’
intents, we can investigate queries by segmenting them into parts
with respect to the function of each part on intent understanding.
Using the first utterance as an example, we first identify its intent
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as “find movie”. Note that, if we replace “James Cameron” with
another movie director’s name, the intent of example (1) would not
change. Therefore, we propose that queries comprise of two types
of word sequences: the context words and the entity words, both of
which influence the way we model the intent understanding.

Following earlier work [16], we assume in our models that each
search query has a single intent. In addition, in our statistical model,
for efficiency reasons, we opt out the ordering of the context words
as well as the entities in a given query and use bag-of-context-words
and bag-of-entities without losing too much information.

3. MODEL SPECIFICATION
We formalize the intuitions described in the previous section into
a Bayesian model that given the user’s intent considers entities and
context words from queries and the clicked URLs independently. By
performing variational inference in this model, we recover a proba-
bility distribution of intents for a query. The plate notation of our
graphical model is shown in Figure 1 and the symbols are summa-
rized in Table 1.
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Fig. 1. Plate notation of our intent detection model. The model with
the dependencies shown by dashed lines is considered as the full
model, which is discussed in section 3.4.

Symbol Description
I Intent distribution
E Entities in a query
T Context words in a query
C Clicked URL components

Φk, Ψk, and Πk Entity, context words and clicked URL com-
ponents distribution of the kth intent

α, β, γ, and τ Hyper-parameters of entity, context words,
URL components and intent distributions

Table 1. Notation used in this paper.
As with all generative models, we interpret the model in a gener-

ative way: users start with an intent in mind, before doing search on
the information they inquire. This intent guides the way for gener-
ating their query and the following clicks. Keeping this in mind, we
formulate our generative story and specify the distributions of the
related random variables, starting with the abstractions in the next
section.

3.1. Distributions of Intent, Entities and Context words
Following the characteristics discussed in section 2, each query has
only one intent. Therefore, for query d, the intent distribution is
a multinomial Id ∼ Mult(n, τ), where nI = 1. Furthermore, a
query Q can be split into two parts: entities, E, and context words,
T . With the bag-of-words assumption, both E and T are defined
as multinomial distributions. Given a query with intent k, its entities
are sampled fromE ∼ Mult(ne,Φk), where ne is the number of en-
tities, and the context words are sampled from T ∼ Mult(nt,Ψk),
where nt is the number of context words.

An important property of our model is that we do not consider
the entity names as observed values, which would otherwise yield an
inefficient bag-of-words model. This is simply because if we use the
entity names directly, the vocabulary size would be very large. In
addition, in the model design the numeric representation of a query
will be a high-dimensional sparse vector. Therefore, rather than the
entity names, we use the category types of the entity names. Specifi-
cally, we introduce a preprocessing step — before modeling the dis-
tributions of a query, by replacing the entities with their entity cate-
gories. For example, in the running example (1), we replace “James
Cameron” with its entity category, “director”. We construct the vo-
cabulary based on the entity categories. There are several advantages
of using entity categories: first, it can obviously reduce the vocab-
ulary size, which will save our computational resources. Secondly,
for a given query, an entity category can be more important than the
value of the entity in understanding the intent of the user. This pro-
cessing step will strengthen the occurrence statistics among different
queries, which will eventually lead to a more confident estimation of
intent distribution.

3.2. Distributions of URL Components
We tokenize each URL and represent them as pseudo-documents
considering bag-of-URL-tokens assumption. For tokenization, we
split each URL into tokens with respect to slashes (“/”). Our moti-
vation in representing URLs as bag-of-URL-tokens is that we find
that some tokens of URLs are actually meaningful lexical units that
reflect valuable information about the associated web page. Further-
more, these terms may be used with with the same purpose across
different sites. Take the following URL from the query log dataset
for example:

www.imdb.com/title/tt1518740/review
After tokenization, we end up with four tokens: www.imdb.com, ti-
tle, tt1518740, review. Each token corresponds to an aspect of its
associated web page, i.e., “www.imdb.com” refers to the IMDB web-
site,“review” indicates that this web page is a review page about the
movie with ID “tt1518740”. Thus, we represent URL tokens as ran-
dom variables of our graphical model. We construct a vocabulary for
the tokens extracted from the observed URLs in our data. Each URL
is a random variable with a multinomial distribution Mult(nc,Πk)
with Πk if it is sampled from the k-th intent.

3.3. Formal Generative Story
We define our generative intent detection model as follows:

1. For each intent k, draw distributions of entity categories Φk,
context words Ψk and URL components Πk,

2. For each query d draw the intent Id from Mult(1, τ),
entities Ed from Mult(ne,ΦId), context words Td from
Mult(nt,ΨId).

3. For each query d a click pertaining to a certain URL with
components Cd are drawn from Mult(nc,ΠId)3

3.4. Investigation of URL Components in Click-Intent Model
One possible extension of our model is to introduce a dependency
between a query and its associated URL. Specifically, we can ex-
tend our current model by introducing a dependency link between
the entity categories and the URL components, as well as the con-
text words and the URL components (demonstrated in Figure 1 with
the dashed lines). Unfortunately, these dependencies introduce an
additional cost while estimating the random variable Π. With the

3Similar to LDA, ne, nt and nc are also drawn from Poisson distributions
with certain parameters. For simplicity, we ignore this part.
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introduction of the dependencies, the total number of parameters as-
sociated for Π would be O(K · |E| · |T | · |C|), which would require
large amounts of data for training. Therefore, in this paper, we did
not include those dependencies and left it as future work.

3.5. Missing Values
Our corpus comprises of different types of queries with missing
information, that introduce additional challenges to our graphical
model design. On one hand, we have intrinsically short queries
from web search query logs. They either lack context or entity
words. Consider the query (2) of the running example in Section
2. It is a single entity query with no context words. On the other
hand, we have translated spoken language queries from a conver-
sational dataset which lack the click information. Henceforth, we
introduce the missing value component into our graphical model by
way of prior information to compute the expected values of the ran-
dom variables with missing values. Specifically, following the non-
informative priors[19], we impute some values without adding any
biased information to specify the prior distribution.

4. INFERENCE
As in LDA, exact inference in this model is computationally in-
tractable [20]. We derive a variational main-field inference, approxi-
mating the distribution over intents, entity categories, context words
and URL components with one fully factorized variational distribu-
tion q(I,Φ,Ψ,Π)

q(I,Φ,Ψ,Π;λ, µ, ν, ρ) =

D∏
d=1

q(Id;λd)

K∏
k=1

q(Φk;µk)

K∏
k=1

q(Ψk; νk)

K∏
k=1

q(Πk; ρk)

where q(Id;λd) is the multinomial distribution Mult(1, λd),
q(Φk;µk), q(Ψk; νk) and q(Πk; ρk) are Dirichlet distributions.
{λd}, {µk}, {νk} and {ρk} are variational parameters. As we
can observe from Eq.(1), there is no dependence between any two
random variables in q.

Given a variational distribution with specified variational param-
eters, we can measure the difference between the posterior distri-
bution p(I,Φ,Ψ,Π|E, T,C;α, β, γ, τ) and the variational distribu-
tion q(I,Φ,Ψ,Π;λ, µ, ν, ρ) using KL divergence, which leads to a
measurement called variational bound — by maximizing the varia-
tional bound, we will find the best approximation based on the full
factorization assumption.

Since all the variational parameters are coupled, we have to up-
date all the variational parameters iteratively. Due to the property of
conjugate family and the fully factorization, we can find the closed
form for all the update equations.

4.1. Intent Distribution

For a given query Q, the variational distribution of Id is given by
a multinomial distribution with parameter λd, where the probability
for Id = k is:

λdk ∝ exp
{∑

i

edi(ψ(µki)− ψ(µk0))

+
∑
r

tdr(ψ(νkr)− ψ(νk0))

+
∑
j

cdj(ψ(ρkj)− ψ(ρk0)) + log τk
}

(1)

where νk0 =
∑

i=1 µki, νk0 =
∑

r=1 νkr , ρk0 =
∑

j=1 ρkj , ψ(·)
is the digamma function and also the logarithmic derivative of the
gamma function.

4.2. Distributions of Entities and Context Words

For a given intent k, we also need to update the variational parame-
ters for the distribution of entity categories, context words, and URL
components.

The probability of i-th category in intent k is

µki = αi +

D∑
d=1

ediλdk. (2)

and the probability of r-th context word in intent k is

νkr = βr +

D∑
d=1

tdrλdk. (3)

Similarly, the probability of j-th URL component in intent k is

ρk = γj +

D∑
d=1

cdjλdk (4)

Due to the property of conjugate distributions, there is a closed
form for every update equation as in Eq.(1) - Eq.(4). In the inference
stage, we can use the updating equations directly without employing
any optimization routine explicitly. The updating process is summa-
rized in Algorithm 1.

Algorithm 1 Variational inference algorithm for our model.
while not converged do

for d = 1, . . . , D do
for k = 1, . . . ,K do Update λdk using equation 1

for k = 1, . . . ,K do
for i = 1, . . . , |E| do Update µki using equation 2
for r = 1, . . . , |T | do Update νkr using equation 3
for j = 1, . . . , |C| do Update ρkj using equation 4

end while

5. EXPERIMENTAL RESULTS

We evaluate our model on both query logs data and conversational
data sets. The purpose of the evaluation is to verify whether our
model can discover any interesting intents and help us to improve
the performance of conventional understanding.

5.1. Data and Experimental Setting
We use two different kinds of datasets: (1) query logs with clicked
URLs that were sampled from Bing search engine logs using 13 base
URL names (i.e., www.{imdb,netflix,fandango}.com);
(2) conversational dataset, from the same domain, that was col-
lected using crowd sourcing, and manually cleaned and annotated
by domain-expert human annotators. The basic information of the
two datasets are described in Table 2.

The experiments include two parts. The first part is the qual-
itative evaluation of our model on the query logs data to demon-
strate that our model can discover interesting and meaningful in-
tents. The second part of the experiment is a quantitative evalua-
tion of our model. We apply the model on the conversational data
together with the query logs data. As discussed in section 3.5, in
our model, the conversational dataset is used as query logs data with
missing values on C. In this case, the distributions of URL compo-
nents estimated from the query logs data are used as potential click
information (prior information) for the conversation dataset.
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Search Number of query logs 80,512
queries Number of entity categories 27

Number of context words 9720
Number of URL components 1531

Conversational Number of training examples 3575
queries Number of dev examples 1200

Number of test examples 1200

Table 2. Data description.

As mentioned in section 2, we assume that each query can be
split into two parts: entities and context words. Because the entity
extraction (or labeling) is a research topic on its own [21], in this
paper, we only use a simple entity extraction method [22]. First, we
construct a list of entities using Freebase. The list includes 21 types
of entities that include movie names, actors, directors, and genre.
Each entry in this list consists of one entity and its entity category.
Then, we refine this entity list by removing some highly ambiguous
entities. For example, entity “UP” refers to a movie name, but it also
could be just a single word. For entity extraction, we use the longest
word match between the query and the entity list. In the experiments,
we noticed that an accurate entity extraction method will definitely
boost the performance of intent detection. We leave this as a future
work.

5.2. Analysis of New Intent Detection
Table 3 shows the top entity, context words and URL components
estimated by our model in the first part of experiments. In this ex-
periment, we only used the query log data with the number of in-
tent K = 40. We show examples for two randomly picked intents.
There are several different ways to define the intent name for both
examples. One can notice the correlations between the top terms
of each intent. For instance, the term starring from the top entity
categories, bio, actor from the top context words and person, biog-
raphy.html from the top URL components indicate that this intent is
probably searching for the biographical information about a movie
star. Similar correlations are observed in the second example. The
terms film/name, film/genre from the top entity category, office, box,
new from the top context words and news indicate that this intent is
most likely related to finding information about new movies.

Top entity categories Top context words Top URL components
film/staring, film/name movies, bio, person movies.yahoo.com

film/production companies played, actor, did person, contributor
biograph.html

film/name, film/genre movies, yahoo, movies.yahoo.com
film/production companies office, box , new news, movie

imdb.com

Table 3. Two randomly selected samples of entity categories, con-
text words and URL components as shown. Only instances with high
confidence from each category are shown.

5.3. Intent Detection
We further test our model for conversational understanding with a
quantitative evaluation. The baseline for the evaluation only includes
unigram features — each utterance is represented as a set of unigram
features with the bag-of-words assumption. Then, we perform an
incremental evaluation on our model. On top of the unigram fea-
tures, we also use the intent distribution estimated from our model
as additional features FEAT1. Since, the conversational dataset does
not include any clicked URL information, we simply employ the
model with missing values, where the missing values were replaced

10 20 40 100 150 300 400

Latent Dimentions K

79

80

81

82

83

84

85

86

87

88

M
ic

ro
-a

v
e
ra

g
e
 F

-s
co

re

Unigram (dev set)

Unigram (test set)

Unigram + Feat1  (dev set)

Unigram + Feat2  (dev set)

Unigram + Feat1  (test set)

Unigram + Feat2  (test set)

Fig. 2. Experimental results of intent detection on conversational
data with different numbers of intents and different feature sets.
FEAT1 includes the output of our model trained on the conversa-
tional data, FEAT2 includes features from FEAT1 and also the output
of our model trained on the query log data.

by a non-informative prior distribution. Moreover, we also train the
model with query log dataset and infer the intent distributions on
the conversational dataset. By adding the distributions into FEAT1,
we have an augmented feature set FEAT2. Then, we can further use
FEAT2 with unigrams for intent detection.

The intent detection task in this experiment can be reduced into
a multi-class classification problem with 22 categories, such as find-
ing a movie and finding showtimes . Note that, the conversational
dataset includes multiple intents and each utterance in this dataset
may also have more than one intent. Therefore, the problem here
is a multi-class, multi-label classification problem. We build one
multi-class multi-label classifier from a binary linear SVM classifier
[23] with the “one vs. the rest” rule. The performance is measured
with micro-averaged f-score.

We test the performance with different numbers of intent clusters
K ∈ {10, 20, 40, 100, 150, 300, 400}. All other parameters were
chosen to optimize f-score on the development set of conversational
data.

The results on the test set of conversational data are summarized
in Figure 2. Our model strongly outperforms the unigram baseline
(F=82.3%). The additional features FEAT2 lead to a further improve-
ment when K ∈ {10, 20, 40, 100, 150}. The best performance on
the development set happens at K = 100 for both types of fea-
tures. As shown in Figure 2, it is also the best number of intents for
the test set. Overall, on the test set, we get an F-measure of 84.1%
and 84.8% for FEAT1 and FEAT2, respectively, which are both better
than the baseline. We also tested our model with bigram features,
and obtained an F-measure of 83.7%. Adding FEAT1 features to the
bigram baseline resulted in similar performance with the unigram
features and FEAT1, the performance on the test set, and resulted in
84.1% F-measure.

6. CONCLUSIONS

We described a variational Bayesian approach for modeling latent
intents of user queries and URLs that they clicked on when avail-
able. Our new models separates the contribution of context words
and entities, and tokenizes URL components, and models URLs as a
bag of URL-tokens. We used this model to enhance supervised intent
classification of user queries from conversational interactions. Our
experimental results demonstrated the effectiveness of this approach
for supervised intent classification, showing further improvements
when a large number of unlabeled search queries are used.
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