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ABSTRACT

This paper proposes a new technique to enable Natural Language
Understanding (NLU) systems to handle user queries beyond their
original semantic schemas defined by intents and slots. Knowledge
graph and search query logs are used to extend NLU system’s cov-
erage by transferring intents from other domains to a given domain.
The transferred intents as well as existing intents are then applied
to a set of new slots that they are not trained with. The knowledge
graph and search click logs are used to determine whether the new
slots (i.e. entities) or their attributes in the graph can be used together
with transfered intents without re-training the underlying NLU mod-
els with the expanded (i.e. with new intents and slots) schema. Ex-
perimental results show that the proposed technique can in fact be
used in extending NLU system’s domain coverage in fulfilling the
user’s request.

Index Terms— Natural language understanding, knowledge
graphs, intent trasnfer, semantic schemas, domain expansion.

1. INTRODUCTION

NLU systems have been built for specific tasks covering one or more
domains. DARPA Air Travel Information System (ATIS) was the
first large scale effort to build NLU systems covering air travel and
hotel reservation [21] domains. Later such systems have been built
by various groups to cover specific tasks [8]. All of these systems
are implemented independently (without a global publicly available
ontology/schema) with specific tasks in mind. Most of these systems
are built in a fully supervised fashion requiring hand–labeled data for
building domain, intent and slot models. NLU systems are typically
composed of domain detectors, intent detectors and slot taggers. Do-
main detection is run to decide whether a query is in-domain (in the
case of single domain NLU systems) or one of the multiple covered
domains (in the case multi-domain NLU systems). Once the domain
is identified, the respective intent detector and slot tagger are run to
identify user’s intent and tag entities in the query.

Recent advances with virtual personal assistant systems (e.g.
Siri, Google Now, Dragon Assistant) covering a wide range of NLU
domains boundaries between covered and uncovered NLU domains
are becoming fuzzy. For example, an NLU system can be designed
for handling only the air travel reservation task but the users may ex-
pect the system to handle new intents (i.e. actions) such as checking
the flight status or making hotel and/or car reservations. These are
all natural extensions of the original air travel reservation task. The
standard approach to solve this problem is to re-design the semantic

schema for the air travel reservation domain and add new intents and
slots to cover related yet new domains. This also requires collecting
and annotating additional data and re-training the NLU models.

In this paper, we propose a new technique which takes a step
to transfer intents 1 from one domain to another and apply them to
the previously unknown slots by leveraging knowledge graph and
search query click logs. This method enables sharing intents and
slots across independently constructed domains. For example, as-
sume that we built two NLU systems: 1) “events” domain where the
users can “search” and “buy” tickets to concerts, games and other
activities (e.g.“buy a ticket to Justin Timberlake concert in Seattle”),
2) “places” domain where the users can search for businesses and
places and asks for phone numbers, driving directions to them. In
the first system “get driving directions” or “call business” intents
are not covered but they are covered in the second system. If the user
says ”get me driving directions to the concert” in the second turn of a
conversation session, which is a natural follow up query, the method
presented in this paper can be used to automatically cover the new
intent ”get driving directions”. The method achieves this by using
knowledge graph [3, 16, 17] and search engine click logs.

This paper is organized as follows: in Section 2, we explain
how to use the knowledge graph for intent transfer. In Section 3, we
describe how to use the search query click logs to ensure sensible
intent transfers between domains. We summarize the related work in
Section 4 and present experimental results in Section 5. Conclusions
and possible future directions are presented in the final section.

2. INTENT TRANSFER USING KNOWLEDGE GRAPH

Each intent in an NLU system corresponds to an action the system
executes and each action requires a set of inputs in the form of slots
(extracted from the user query) either to fetch information from the
back-end or show results to the user. When an intent is transferred
to a new domain, it is likely that it will be applied to the slots that it
was not trained with in the domain it is coming from. So the ques-
tion is whether we can find legitimate slots in the new domain to
execute the correct system action for the new intent. In the exam-
ple of “show me driving directions to <concert event> Justin Tim-
berlake concert<concert event>”, “get driving directions” is a new
intent transferred to the “events” domain from the “places” domain.
This intent takes “address”, “location”, “business” as the possible

1“Intent transfer” means two things: 1) “transferring” an intent to new
slot(s), 2) transferring an intent from one domain to another.
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slot types but not the “concert event” slot type in the “places” do-
main.

We use the knowledge graph to lookup entities from the query
and decide if the given value (e.g. “Justin Timberlake concert”) for a
slot (e.g. “concert event”) has a type in the knowledge graph that is
compatible with the supported slot type (e.g. “address”, “location”,
“business”) of a given intent (e.g. get driving directions). If the en-
tity is not compatible with types observed in the training data, we use
the knowledge graph to find a property (i.e. attribute) of that entity
that has a compatible type. By compatible, we mean that two types
are the same or one of them is sub-type of the other in the knowledge
graph. In our example, the intent “get driving directions” can only
support type “location.location”, therefore “address” and “location”
are compatible slot types, but “concert” and “business” are not. We
describe how to find the compatible slot types and sub-types for a
given intent using the knowledge graph in the next subsection.

2.1. Weighting Slot Types Using Knowledge Graph

In order to find accepted slot types for an intent in NLU domains,
we first study intents in all NLU domains for which we have labeled
data and semantic schema. For all intetnts, we want to find out the
relation between slots and types in the knowledge graph. Figure 1
shows an example list of slots in the NLU domains connected to en-
tities that appear in those slots in NLU training data with a weight
equals to the number of times each entity appears with each slot. For
example, “Boston” is used as “Travel Departure City” four times in
the training data. These entities are connected to the different graph
types shown on the right side in the figure. Note that an entity can
have a large number of types in the knowledge graph. For exam-
ple “Chicago” is an entity and it has 29 types such as “location”,
“city”, “team location”, “travel.destination”,“music.record label”,“
book.subject”, “olympics.bidding city”.

Fig. 1. Slots, their entities and knowledge graph types

We consider two approaches to rank the graph types for each
slot. First, we weight a type t in slot d in a naive way using the
following expression:

st,d =
∑

e∈entities(d):∃edge(e,t)

weightd,e (1)

where entities(d) is the entity set for slot d, and weightd,e denotes
the count of entity e appears in slot d. For example the score of type
“City” in slot “Travel Departure City” is 3 + 4 = 7, since “Boston”
and “San Francisco”both are of type “City” and they appear in slot
“Tavel Departure City” 4 and 3 times respectively.

The second approach is to weight graph types for all slots jointly
by TF-IDF. Term Frequency Inverse Document Frequency (TF-IDF)
is a widely used metric in numerous natural language processing ap-
plications. TF-IDF consists of computing Term Frequency (TF) and
Inverse Document Frequency (IDF) and TF-IDF score is the product
of the two. We first create a vector of entities for each slot j with
length equal to total number of entities and assign the ith component
of this vector to be si,j which is computed in Eqn. (1). Then we
apply an algorithm similar to the TF-IDF re-weighting but with two
modifications.

In this work, we consider using the graph types as the terms
and slots as the documents. Equations for TF for type t from the
knowledge graph and IDF for type t in slot d are as follows:

TF (t, d) = 0.5 +
0.5f(t, d)

maxt′∈df(t′, d)
(2)

IDF (t) = log
|D|∑

d∈D 1{t ∈ d} (3)

where |D| is the number of slots we have, 1{t ∈ d} is one if type t
appears in slot d and f(t, d) is then number of time type t appears in
slot d.

The basic idea is to rank frequent types higher if they are spe-
cific types to a certain slot. In our example, the first approach in Eqn.
(1) gives graph type “employer” a score 7 for slot “Travel Departure
City” which is the same as types like “City” and “Travel destina-
tion”. While in the TF-IDF approach, “Employer” will rank lower
for “Travel Departure City” since it is associated with many other
slots.

One issue in our example is that graph type “State” in slot
“Travel Arrival City” will get a higher score than graph type “Travel
Destination” because “Travel Destination” appears with two slots
while “State” appears with only one slot. To adress this issue, we
modify IDF so that it does not down-weight a graph type even if
appears in many different slots as long as those slots are similar. We
measure similarity between slot d′ and d as the percentage of entities
appear with both slots denoted by share(d′, d). The modified IDF
equation becomes:

IDF (t, d) = log
|D|∑

d′∈D e
−αshared(d′,d) (4)

where α is a tuning parameter that controls how fast the decay hap-
pens. We tune α by optimizing the graph type rank performance on
a small development set of 5 slots. With this modification, IDFs are
slot specific.

The second issue in Eqn. (1) is that it does not assign weights
to the edges between entities and different graph types. A simple
fix for this is to give a weight that is inversely proportional to the
number of graph types appearing with each entity. This has the effect
of weighting ambiguous entities (entities with many different graph
types) lower than unambiguous ones. In our example, edges between
“Boston” and its types will get a weight of 1

4
while edges between

“New York” and its types take 1
5

. This will change f(t, d) used in
calculating TF to be :

f(t, d) =
∑

e∈entities(d):t∈types(t)

1

|Ne|
(5)
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Table 1. Top graph types for slots using two different weighting
approaches

Slots Top types learned us-
ing TF-IDF

Top types learned using
modified TF-IDF

Restaurant: business.employer local.restaurant
name business.operation business.operation

organization.organization organization.organization
Travel: location.location travel.destination
absolute lo-
cation

statistics.economic
group

periodicals.newspaper
circulation area

statistics.population
group

location.dated location

Restaurant: book.subject food.cuisine
cuisine location.location food.food

food.cuisine food.dish
Games:
character

fictional universe char-
acter

fictional universe char-
acter

film character game character
game character film character

where Ne is the total number of graph types entity e has. The func-
tion entities(d) returns all entities in document d (i.e. slot d).

Table 1 shows some example results for top graph types re-
trieved with the two approaches. With the enhanced TF-IDF, type
“local.restaurant” is correctly ranked as the top type for slot “Restau-
rant:name”.

2.2. Finding Entities Compatible with the Transferred Intent

After getting a weighted list of graph types for each slot, we can use
a simple search algorithm to find the best entity that may be accepted
by an intent. The pseudo-code for finding the best compatible entity
is shown in Algorithm 1. The knowledge graph is used to look up
the entity type, parent types and all of its properties, and return the
entity itself or one of its properties (i.e. attributes) that is most com-
patible with the ranked slot types for the intent. The ∗ in Algorithm 1
denotes the dot product operator which simply measures the match
between an entity types and the excepted types for the slot.

With this algorithm, we can enable existing intents (not trans-
ferred) within a domain to accept new slots, which are not covered
in the existing semantic schema. For example, in the TV domain
semantic schema “change channel” intent never appears with the
“tv show” entity. However, the user can say “change channel to late
night show” and expect the system to work. We can now transfer
“change channel” intent to take entity “tv show” since we learned
that “tv channel” is an attribute (i.e. property) of “tv show” in the
graph.

3. INTENT TRANSFER BETWEEN DOMAINS USING
SEARCH ENGINE LOGS

In addition to intent transfers to support more slots within the same
domain, we also find out if certain intents can be used within other
domains applied to similar or different slot types. We train a classi-
fier to automatically validate a potential intent transfer between do-
mains.

First, we identify the lexical and syntactic patterns that are asso-
ciated with an intent using the following simple heuristics. For each
intent we extract the top N frequent patterns (i.e. intent patterns)
used by this intent. This is achieved by extracting the most frequent

Procedure 1 Finding the most comptatible entity or entity attribute
for a given slot
INPUT: : SlotTypes: list of top N types for the slot

E: entity to fill the slot
OUTPUT: : (EntityName → P.name, PropertyValue → P.value):

the best entity for the given slot
BestMatch=null, BestScore=-1
for all type T in SlotTypes do

if E has T as type then
Return(Root, E)

end if
end for
for all type T in SlotTypes do

for all property P in E.properties do
if T ∈P.types and P.types * SlotTypes > BestScore then

BestMatch = (P.name, P.value)
BestScore = P.types ∗ SlotTypes

end if
end for
ReturnBestMatch

end for

word tri-grams that do not contain any slot values and contain no
more than one stop word. Examples of top intent patterns discov-
ered by this technique for some intents are shown in Table 2.

After top patterns are extracted, we collect a list of entities that
appear both in the training data and target domain which can poten-
tially co-occur with the new intent. Artificial queries are generated
using pairs of 〈intent pattern, entity〉. We then mine the search
logs to look for evidence that the intent patterns, which are essen-
tially word ngrams and domain (represented by the entity) are good
combinations. For example, a pair of 〈Places:get phone number,
Flights:flight airline〉 is used to test if “get phone number” can
be transfered to “Flights” domain, and 〈Finance:find stockinfo,
Games:game company〉 is used to check if “find stockinfo” can be
transfered to “Games” domain.

Note that not all candidate pairs are valid transfers. Some in-
valid transfer candidates still get nonzero search results because
of ambiguous entities. For example the pair 〈Movies:find cast,
Games:game character〉 is invalid, but because some movie names
are also game characters (e.g. Superman), we can find many matched
queries in the search logs.

In order to assess whether an intent transfer is valid we train
a logistic regression classifier. The training data set for the classi-
fier consists of 621 (intent pattern, entity) pairs manually labeled as
valid or invalid. For feature set, we use features from the search re-
sults (e.g. number of search results supporting this intent, domain
pair, number of unique entities appeared in the mined queries).

This approach assumes that entities used for searching the logs
belong to only the target domain. In order to handle the issue of
ambiguous entities, we use a list of weighted entities for each do-
main, where each entity has a score denotes how likely it is from
that domain. Such weighting list can be obtained from work like
in [6], or scores from knowledge graph or the proposed TF/IDF in
Section 2.1. We compare three weighting approaches and present
the results in Section 5.
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Table 2. Examples of top patterns used for intents
Intent Top Patterns
Travel:checkflight find flights to, search for flights, show flights

to, find flights from, find flights for
LiveTV:change
channel

change the channel, to watch channel, switch
to channel, change to channel, turn to channel

Weather:check
weather

weather forecast for, the weather forecast,
show me weather, show weather for, the
weather conditions

4. RELATED WORK

The task of intent determination is emerged partly from commercial
call-routing applications for customer care centers, such as AT&T
How May I Help You system [8]. While the routes are motivated
by the business needs, for call classification, it makes more sense
to consider semantically coherent utterances, as defined by intents,
which can then be mapped to routes [10]. Later, unsupervised learn-
ing approaches have been proposed to cluster these intents automati-
cally using incoming calls [2]. To the best of our knowledge, the task
of transferring intents to expand the NLU domain coverage is new
and no previous work have been done to this specific point. On the
other hand, there have been some recent work on using query click
logs and knowledge graphs in NLU systems.

Query logs have been shown to be useful in improving domain
and intent classification [4,13,14,20], and bootstrapping models for
new domains [7]. On another study,we have augmented the train-
ing data for intent detection using similar queries via a Bayesian
framework [1]. Availability of the knowledge graphs has resulted
in new studies in the NLU field. For example, traversing the social
graph have been proposed [17] for Facebook, linking textual doc-
uments such as Wikipedia to knowledge graphs is studied in this
framework [3, 16].

In our previous work [12], we used the Wikipedia entries of the
knowledge graph nodes to bootstrap slot filling models. Similarly,
in the Semantic Web community, pattern matching based methods
have been used [9, 15, 18]. We have focused on combining semantic
knowledge graph with query click logs for various tasks. Most re-
cently, we have used the query click logs and the existing knowledge
graph to detect relations or intents missing the graph using distant
learning [11]. For slot filling, [19] used seed structured in-domain
sites in the nodes of the knowledge graph for a given domain to ex-
tract the frequent queries hitting those sites. Those queries are then
used as bootstrap training data for slot filling. The node pairs in the
knowledge have been used for web search to realize their natural
language forms to bootstrap relation or intent detection models [5].

5. EXPERIMENTS AND RESULTS

We first created a set of test scenarios to evaluate intent trans-
fer to new slots. Some example scenarios are given in Table 3.
The template slots are slots desined for intents, and test slots are
slots to which we want to transfer intents. For example, the intent
“change channel” is designed to take slot “channel name”, but we
want to verify if the intent can be transfered to“tv show”. From
all scenarios, 200 examples are created by representing intents with
intent n-gram patterns and slots with slot values. We evaluate the
accuracy of intent transfer by slot filling in five domains and the
test results are presented in Table 4. The results are promising since
those queries were not be accepted in the baseline system. Also the

results are expected to improve further with the fast growth of the
knowledge graph.

Table 3. Examples of slot filling scenarios
Domains Intents Template Slots Test Slots
Movies find movie movie name movie writers
LiveTV change chan-

nel
livetv channel
name

TV show

Weather check
weather

absolute loca-
tion

university
name

Table 4. Slots filling results
Domains Accuracy
LiveTV 86.70%
Movies 93.90%
Flight 70.00%
Weather 76.70%
Finance 62.50%
Sports 81.80%

Table 5. Intent transfer to new
domains

Domains Accuracy
Restaurant 80.00%
Flight 63.30%
Local Busi-
ness

75.60%

Travel 91.30%

In order to evaluate intent transfer across different domains, we
used the mining technique described in Section 3 to extract candidate
list of intents and domains from all 26 domains. Logistic regression
models are trained with three different weighting methods: the basic
entity weighting using equation (1), entity weighting using search
engine logs in [6] and the modified TF-IDF weighting in Section 2.1.
Accuracy is measured as the percentage of valid transfer predictions
out of all mined transfers. The results are shown in Table 6 across
all domains. The proposed weighting approach is much better than
basline and other weighting methods.

We aslo evaluate transferring intents to a new domain. A clas-
sifier built using training data from all domains other than the target
domian. We take a set of entities in a target domain and pair those
entities with intents from all existing domains to check if any intents
can be transferred to the target domain using the classifier. The ex-
perimental results in four target domains are shown in Table 5. For
example, in the target “Travel” domain, 91.3% of intents that the
model predicted as transferable from other domain are valid.

Table 6. Intent transfer across existing domains
Models with different weighting approaches Accuracy
Baseline: without weighting 54.3
Weighting using Equation 1 59.2
Weighting using search logs [6] 60.8
Weighting using modified TF-IDF 74.9

6. CONCLUSIONS

We propose two automatic approaches to expand the coverage of an
NLU system using a set of existing NLU domains, search logs and
the knowledge graph. First we expand domain coverage by identify-
ing new slot types that a given intent can consume, and second we
transfer intent from one domain to a new domain and pair up with
new slots in the new domain. The experimental results show that the
proposed techniques are promising and they can be potentially be
used to handle out-of-domain and/or out-of-schema queries directed
to an NLU system.
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