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ABSTRACT

The parameters in a general Gaussian process, including the param-
eters in an additive Gaussian noise process, are estimated based on
zero crossing data for the total process and arbitrarily filtered ver-
sions thereof. A nonlinear weighted least squares estimate is con-
sidered and an analysis of the asymptotic covariance matrix of the
estimated parameter vector is made. The proposed estimator and the
use of zero crossing data are suitable when information of a process
is sent from wireless sensors to a node center for further processing
due to an efficient use of available bandwidth.

Index Terms— Gaussian process, estimation, zero crossings,
wireless sensors, accuracy analysis

1. INTRODUCTION

Wireless sensors are frequently used for registering and monitoring
various processes. Many cheap sensors without additional hardware
that allows computations are often strategically placed in the space of
interest, and the information collected by the sensors are sent wire-
lessly to a node center for further processing. This puts requirements
on the available bandwidth that can not always be fulfilled. Alterna-
tives where reduced amounts of information are sent from the sen-
sors to the node center could therefore be interesting. However, this
requires that the result of the information processing at the node cen-
ter based on a reduced quantity of information will be of sufficiently
high quality for the application at hand. One set of information that
makes efficient use of available bandwidth is based on level cross-
ings of the process of interest and filtered versions thereof. In fact,
the only information to be sent from a sensor to the node center is the
number of level crossings of a process during a certain time interval.
The aim of the paper is therefore to consider information processing
of level crossing data for a general Gaussian process and filtered ver-
sions thereof with the purpose of estimating the process parameters.

Some of the first results on the theory of zero crossings are found
in the information theory literature [1–4]. The survey paper [5] and
the book [6] present many important results and are interesting from
a signal processing perspective. Additional results on zero crossing
rates of functions of Gaussian processes are presented in [7, 8] and
a survey of results for Gaussian processes are given in [9]. Further-
more, some recent results on the theory of level crossings are found
in [10, 11].

Parameter estimation based on level crossings of the process
of interest and filtered versions thereof is considered in [6, 12–15].
In [6], a relation between the number of zero crossings and the cor-
relation function is explained and it is described how the relation
can be used for parameter estimation purposes. The problem of es-
timating the parameters in autoregressive processes based on zero
crossing data is studied in [12]. Estimation of the fractal index and
the fractal dimension of a Gaussian process based on level crossing

data is considered in [13]. In [14], the poles of autoregressive mov-
ing average processes are estimated based on information of higher
order crossings. Time delay estimation based on zero crossing data
is considered in [15].

Here, estimation of the parameters in general Gaussian pro-
cesses based on information of the number of zero crossings for the
process itself and for filtered versions of the process. This is done
by using a relation between the number of zero crossings and the
correlation function of a process. The relation is considered for the
process itself as well as for filtered versions thereof. As the number
of zero crossings can be registered and the correlation function is a
possibly nonlinear function in the unknown parameters, a nonlinear
weighted least squares criterion is defined and minimized. There-
after, the asymptotic covariance matrix of the estimated parameter
vector is analyzed. In the analysis, the covariance matrix of the
vector containing the registered number of zero crossings for the
process and its filtered versions must be evaluated. Unfortunately,
the evaluation of the covariance between the registered number of
zero crossings for different processes is nontrivial. As an example
of a Gaussian process for illustrating the material in the paper nu-
merically, a diffusion process is considered. The rest of the paper
is organized as follows. In Section 2, the relation to prior work
is given. The parameter estimation is considered in Section 3, the
asymptotic normalized covariance matrix of the estimated parame-
ter vector is given in Section 4, and second order statistics of zero
crossings is considered in Section 5. The numerical examples are
presented in Section 6, some discussions are found in Section 7, and
conclusions are given in Section 8.

2. RELATION TO PRIOR WORK

The paper is devoted to estimation of parameters in general Gaus-
sian processes based on information on the number of zero cross-
ings for the process itself and for filtered versions of the process.
Prior work on parameter estimation based on zero crossing data in-
cludes [6, 12–15], but the approach for estimating the parameters in
general Gaussian processes taken here has not been considered be-
fore. This includes, in addition to considering a general structure for
Gaussian processes, the estimation of the parameters characterizing
a possible additive Gaussian measurement noise process, and the use
of zero crossing data for arbitrarily filtered versions of the process.
For example, special cases of Gaussian processes are considered in
terms of autoregressive processes in [12] and autoregressive moving
average processes in [14], whereas general Gaussian processes are
considered in [13], but with the special aim of estimating the fractal
index and the fractal dimension. Here, an analysis of the asymptotic
covariance matrix of the estimated parameter vector for the general
Gaussian case, not previously considered in the literature, is also
made. In the analysis, expressions for zero crossing covariances re-
cently published in [16] are used for evaluating variances of zero
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crossing rates.

3. PARAMETER ESTIMATION

Consider a Gaussian stationary process uk with correlation function
ρL. The indicator of a zero crossing at time k is

Zk =


1, if uk > 0 and uk+1 < 0

1, if uk < 0 and uk+1 > 0

0, otherwise
(1)

and the total number of zero crossings for k = 0, . . . , N − 1 is z =∑N−1
k=0 Zk, with zN = z/N being the zero crossing rate. Due to

stationarity of the process uk, it holds that [16] E{zN} = P(Zk =
1), where P denotes probability. Furthermore, the relation [6]

E{z} = N − 1

π
arccos(ρ1) (2)

holds between the expected value of the number of zero crossings
and the correlation element ρ1 of the process.

Consider a general situation in which a parameter vector θ0 =
[θ01 · · · θ0n ]T is needed for describing the properties of uk. For
example, if uk is an autoregressive process observed in white noise,
θ0 contains the autoregressive parameters and the noise variance.
Consequently, the correlation element ρ1 is dependent on θ0 and the
right hand side in (2) can be described as a function f1(θ0). If the
registered number of zero crossings is denoted as ŝ1, the relation
ŝ1 = f1(θ) + δ1, where δ1 is an error, is motivated from (2). Note
that for θ = θ0, δ1 = 0 and ŝ1 = E{z}. An analoguous reasoning
for M − 1 different filtered versions of uk gives the relations ŝi =
fi(θ) + δi, i = 2, . . . ,M . With the aim of estimating θ0 based on
zero crossing data, the loss function

V (θ) = ||δ||2Q = ||ŝ− f(θ)||2Q,

where θ = [θ1 · · · θn]T , δ = [δ1 · · · δM ]T , ŝ = [ŝ1 · · · ŝM ]T ,
and f(θ) = [f1(θ) · · · fM (θ)]T is now considered. Furthermore,
M > n, ŝ contains the registered number of zero crossings for the
process uk and filtered versions thereof, f(θ) is a nonlinear function
in θ, and Q is a positive definite and symmetric weighting matrix.
Define the estimate

θ̂ = arg min
θ

V (θ). (3)

In the next section, the asymptotic normalized covariance matrix of
nonlinear weighted least squares estimate θ̂ is considered.

4. ASYMPTOTIC COVARIANCE MATRIX

Provided that the loss function V (θ) is twice continuous differen-
tiable in θ, the asymptotic normalized covariance matrix Cθ̂ of θ̂ is
given by

Cθ̂ = lim
N→∞

N ·E{(θ̂ − θ0)(θ̂ − θ0)
T } = H−1GH−1, (4)

where

G = lim
N→∞

N ·E{V
′
(θ0)

(
V

′
(θ0)

)T }, (5)

H = lim
N→∞

V
′′
(θ0), (6)

with V
′
(θ0) =

dV (θ)
dθ |θ=θ0 and V

′′
(θ0) =

d2V (θ)

dθdθT |θ=θ0 . Straight-
forward differentiation gives

V
′
(θ) = 2

M∑
i=1

M∑
j=1

{f
′
i (θ)Qijfj(θ)− ŝiQijf

′
j (θ)}, (7)

V
′′
(θ) = 2

M∑
i=1

M∑
j=1

{f
′′
i (θ)Qijfj(θ) + f

′
i (θ)Qij

(
f

′
j (θ)

)T
− ŝiQijf

′′
j (θ)}, (8)

where f
′
i (θ) = dfi(θ)

dθ ∈ Rm×1, f
′′
i (θ) = d2fi(θ)

dθdθT ∈ Rm×m, and
Qij denotes element ij of Q. Furthermore, using (7) in (5) results
in

G = 4

M∑
i=1

M∑
j=1

M∑
k=1

M∑
`=1

{
QijQklf

′
j (θ)

(
f

′
`(θ)

)T
×
(
E{ŝiŝk} − 2fi(θ)E{ŝk}+ fi(θ)fk(θ)

)}
.

(9)

From

ŝi = fi(θ0) + εi, (10)

where εi is an error, it follows that

E{ŝi} = fi(θ0), (11)
E{ŝiŝj} = fi(θ0)fj(θ0) +E{εiεj}. (12)

Using (11) in (9) gives

G = 4

M∑
i=1

M∑
j=1

M∑
k=1

M∑
`=1

{
QijQklf

′
j (θ)

(
f

′
`(θ)

)T
×
(
E{ŝiŝk} − fi(θ)fk(θ)

)}
,

(13)

and using (12) in (13) gives the final expression

G = 4

M∑
i=1

M∑
j=1

M∑
k=1

M∑
`=1

QijQklf
′
j (θ0)

(
f

′
`(θ0)

)T
E{εiεk},

with f
′
i (θ0) = dfi(θ)

dθ |θ=θ0 . The evaluation of E{εiεj}, i.e., the
covariance between ŝi and ŝj , is considered in Section 5. To find
H, it is noted that from (10), limN→∞ ŝi = fi(θ0), which together
with (8) in (6) give

H = 2

M∑
i=1

M∑
j=1

Qijf
′
i (θ0)

(
f

′
j (θ0)

)T
.

As M is a small number, equal to or slightly larger than the number
of unknown parameters, it is not a computationally intensive task to
compute the quadruple and double sums in the expressions for G
and H, respectively. Also note that due to symmetry, only the upper
diagonal matrix has to be calculated in both cases. A possibility is
however to consider a notation based entirely on vectors and matri-
ces for expressing G and H, but the current expressions are likely
easier to interpret. Finally, note that in the special case of no weight-
ing, i.e., Q = I, where I denotes the identity matrix, the expressions
for G and H simplify to

G = 4

M∑
i=1

M∑
j=1

f
′
i (θ0)

(
f

′
j (θ0)

)T
E{εiεj},

H = 2

M∑
i=1

f
′
i (θ0)

(
f

′
i (θ0)

)T
.
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5. SECOND ORDER STATISTICS OF ZERO CROSSINGS

The variance of a zero crossing rate and the covariance between zero
crossing rates are considered in Sections 5.1 and 5.2, respectively.

5.1. The variance of a zero crossing rate

The variance of the zero crossing rate zN , defined in Section 3, is
given as [16]

var(zN ) =
1

N2

(
Nγ0 + 2

N−1∑
k=1

(N − k)γk

)
, (14)

where γk = cov(Z0, Zk). Furthermore, it holds that [16]

γ0 =
1

4
− 1

π2

(
arcsin(ρ1)

)2
, (15)

γ1 =
1

2π
arcsin(ρ2)−

1

π2

(
arcsin(ρ1)

)2
and that

γk ≈
2(1− ρ1)
π2(1 + ρ1)

ρ2k.

The covariance between the zero crossing rates of two different pro-
cesses is considered next.

5.2. The covariance between zero crossing rates

The variance of the zero crossing rate of a certain process can be
evaluated as described in Section 5.1. However, the problem of
finding the covariance cov(zN , vN ) between the zero crossing rates
zN and vN of two different processes uzk and uvk is more difficult.
To the best of the authors knowledge, no direct way for evaluating
cov(zN , vN ) exists.

As var(zN ) and var(vN ) can be expressed, an attempt to find
cov(zN , vN ) is to use the well known formula

cov(zN , vN ) =
(
var(zN + vN )− var(zN )− var(vN )

)
/2, (16)

provided that var(zN + vN ) can be found. The latter variance can
be expressed if the correlation function for the underlying process
uz+vk with a zero crossing rate of zN +vN is known. The problem is
that such a process is not unique; two processes can indeed have the
same expected zero crossing rate but the variances of the zero cross-
ing rates for the processes can be different. For example, the first or-
der autoregressive process ηk = αηk−1+ψk for k = 0, . . . , N −1,
where α = cos(π(z + v)/(N − 1)) and ψk is zero mean white
Gaussian noise, has approximately an expected zero crossing rate of
zN +vN [6]. Unfortunately, the variance of the zero crossing rate of
this autoregressive process is not necessarily similar to the variance
of the zero crossing rate for the particular underlying process uz+vk

that is sought. What can be said though about the correlation func-
tion ρz+vL for the particular underlying process uz+vk that is sought
is that for L = 1,

ρz+v1 = cos
(
arccos(ρz1) + arccos(ρv1)

)
,

which follows from (2), where ρz1 and ρv1 denote the correlation func-
tions for uzk and uvk, respectively, evaluated for L = 1. Based on
ρz+v1 , a rough estimate of var(zN + vN ) is obtained as

var(zN + vN ) ≈ 1

N

(1
4
− 1

π2

(
arcsin(ρz+v1 )

)2)
, (17)

using (14) and (15). A possibility is then to consider the estimate
(17) together with the estimates

var(zN ) ≈ 1

N

(1
4
− 1

π2

(
arcsin(ρz1)

)2)
, (18)

var(vN ) ≈ 1

N

(1
4
− 1

π2

(
arcsin(ρv1)

)2) (19)

of var(zN ) and var(vN ), respectively, in (16) to get an estimate of
cov(zN , vN ). The reason for chosing approximations as (18) and
(19) based on only one covariance element γz0 = cov(Z0, Z0) and
γv0 = cov(V0, V0), respectively, and not an arbitrary number of co-
variance elements is to “match” the approximation (17) that is based
on only one covariance element γz+v0 = cov(S0, S0). Here, Z0,
V0, and S0 are the indicators of a zero crossing at time 0 for the
processes uzk, uvk, and uz+vk , respectively, defined as in (1).

6. NUMERICAL EXAMPLES

As an example of a Gaussian process, the diffusion process

dx(t) = a0x(t)dt+ dw(t)

is considered, where dw(t) is the increment of a Wiener process
w(t) with unit incremental variance. The correlation function of
x(t) is given as [17, 18] ρx(τ) = e−a0|τ | and the correlation func-
tion of the corresponding sampled process xk with sampling interval
h is ρxL = ρx(Lh). It is assumed that xk is observed in zero mean
white Gaussian noise ek of variance λ2

0 as yk = xk + ek.
In the first example, the noise-free case is considered, and based

on (2), θ0 = a0 is estimated from the registered number of zero
crossings ŝ1 for the process xk according to (3), where f1(θ) =
((N − 1)/π) arccos(ρx1(θ)), with the dependency on θ for the cor-
relation element ρx1 being emphasized. Data, N = 1000 samples,
are generated for a0 = 2 and h = 0.1, and a0 is estimated as â.
The data generation and the estimation is repeated 1000 times in a
Monte Carlo study and the resulting empirical mean and variance are
shown in Table 1. In the same table, the theoretical variance (4) of â
is also given together with the Cramér-Rao bound (CRB), computed
using Slepian-Bangs formula [19, 20], for two different situations.
The first bound, denoted CRBzc, is for the estimation of a0 based on
the number of zero crossings and the second bound, denoted CRBx,
used for comparison purposes, is for the estimation of a0 based on
the N samples {xk}N−1

k=0 . It is seen that the theoretical variance can
describe the empirical variance, that the estimator reaches the bound
CRBzc, and that CRBzc is about a factor three larger than CRBx.

In the second example, the noisy case is considered, and based
on (2), θ0 = [a0 λ2

0]
T is estimated from ŝ = [ŝ1 ŝ2]

T accord-
ing to (3), without applying any weighting in the criterion function
V (θ). Here, ŝ1 and ŝ2 are the registered number of zero crossings
for the processes yk and the differenced process dk = yk − yk−1

with correlation functions ρyL and ρdL, respectively. Note that ρyL
and ρdL are expressed in terms of ρxL and λ2

0. Furthermore, f(θ) =
[f1(θ) f2(θ)]

T , where f1(θ) = ((N − 1)/π) arccos(ρy1(θ)) and
f2(θ) = ((N − 2)/π) arccos(ρd1(θ)), with the dependency on θ
for the correlation elements ρy1 and ρd1 being emphasized. Note that
the factor N − 2 appears in the expression for f2(θ) as there is only
N − 1 samples of dk available. Data, N = 10000 samples, are
generated for a0 = 2 and h = 0.1 for different signal-to-noise
ratios (SNRs) obtained by varying λ2

0, and θ0 is estimated as θ̂.
The data generation and the estimation is repeated 1000 times in
a Monte Carlo study and the resulting empirical variances are shown
together with the theoretical variances given by (4) and the CRBs
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Table 1. The emprical mean and variance for â, the theoretical vari-
ance for â, and the bounds CRBzc and CRBx for the estimation of
a0 = 2 when there is no noise. Here, N = 1000 and h = 0.1.

empirical theoretical
mean(â) var(â) var(â) CRBzc CRBx
2.0134 0.1266 0.1259 0.1259 0.0403

Fig. 1. The empirical and theoretical variances, and the bound CRBy
for the estimation of a0 (left) and λ2

0 (right) as functions of the SNR.
Here, a0 = 2, N = 10000, and h = 0.1.

Fig. 2. The empirical and theoretical variances, and the bound CRBy
for the estimation of a0 (left) and λ2

0 (right) as functions ofN . Here,
a0 = 2, λ2

0 = 0.01, and h = 0.1.

computed by Slepian-Bangs formula as functions of the SNR for
the estimation of a0 and λ2

0 in Figure 1. In (4), the approximation
E{ε1ε2} = E{ε2ε1} ≈ 0 is made as it is known from empirical
data that it is much smaller than E{ε21} and E{ε22}. The bound, de-
noted CRBy , used for comparison purposes, is for the estimation of
θ0 based on the N samples {yk}N−1

k=0 . From the figures, it is clear
that the theoretical variances can describe the empirical variances. It
is also illustrated how much the estimation accuracy, could be im-
proved in case the N samples {yk}N−1

k=0 were used instead of just
two registered number of zero crossings. However, it is important to
keep in mind that such a gain in estimation accuracy would come at
the cost of a largely increased bandwidth requirement.

In the final, third example, the setup and all details are the same
as in the second example, with the difference that λ2

0 is kept con-
stant (λ2

0 = 0.01) whereas N is varied. The empirical variances are
shown together with the theoretical variances given by (4) and the
CRBs computed by Slepian-Bangs formula as functions of the SNR
for the estimation of a0 and λ2

0 in Figure 2. Yet again, it is illustrated
that the theoretical variances can describe the empirical variances.

7. DISCUSSIONS

The quality of the estimation results for the noisy case in Section 6
can be improved. First of all, information of the number of zero
crossings for several other filtered versions of the process of inter-
est can be included. As a consequence, the number of equations
becomes greater than the number of unknowns in the loss function
V (θ). Furthermore, use can be made of the weighting matrix Q.
It is well known that in the Gaussian case, an optimal choice of Q
is the inverse of the covariance matrix of ŝ. The covariance matrix
can be computed using the results in Section 5. However, as there
is a dependency on the true and unknown process parameters, it is
suggested to first apply the estimator without weighting and then use
the estimated parameters in the computation of the covariance ma-
trix, thus obtaining an approximately optimal weighting. Note that
the asymptotic normalized covariance matrix of the estimated pa-
rameter vector given in Section 4 can be used for theoretical investi-
gations of what can be gained in terms of accuracy by increasing the
number of equations and using an approximately optimal weighting.

8. CONCLUSIONS

The parameters in a general Gaussian process, including the parame-
ters in an additive Gaussian noise process, have been estimated based
on zero crossing data for the total process and arbitrarily filtered ver-
sions thereof. A nonlinear weighted least squares estimate has been
considered and an analysis of the asymptotic covariance matrix of
the estimated parameter vector has been made. The proposed estima-
tor and the use of zero crossing data are suitable when information
of a process is sent from wireless sensors to a node center for further
processing. This is due to an efficient use of available bandwidth as
only the number of zero crossings for a process is sent from a sensor
to a node center. Numerical examples have illustrated the proposed
method and the asymptotic covariance matrix. This includes a com-
parison with the Cramér-Rao bound for the case when all samples,
and not only zero crossing data, are available. The gain in estimation
accuracy in that case would come at the cost of a largely increased
bandwidth requirement.
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[17] K. J. Åström, Introduction to Stochastic Control Theory, Aca-
demic Press, New York, NY, 1970.
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