
ITERATIVE BAYESIAN WORD SEGMENTATION FOR UNSUPERVISED VOCABULARY
DISCOVERY FROM PHONEME LATTICES

Jahn Heymann, Oliver Walter,
Reinhold Haeb-Umbach∗

University of Paderborn
Department of Communications Engineering

Paderborn, Germany

Bhiksha Raj †

Carnegie Mellon University
Language Technologies Institute
5000 Forbes Avenue, Pittsburgh

PA 15213, United States

ABSTRACT

In this paper we present an algorithm for the unsupervised segmen-

tation of a lattice produced by a phoneme recognizer into words.

Using a lattice rather than a single phoneme string accounts for the

uncertainty of the recognizer about the true label sequence. An ex-

ample application is the discovery of lexical units from the output of

an error-prone phoneme recognizer in a zero-resource setting, where

neither the lexicon nor the language model (LM) is known. We pro-

pose a computationally efficient iterative approach, which alternates

between the following two steps: First, the most probable string is

extracted from the lattice using a phoneme LM learned on the seg-

mentation result of the previous iteration. Second, word segmenta-

tion is performed on the extracted string using a word and phoneme

LM which is learned alongside the new segmentation. We present

results on lattices produced by a phoneme recognizer on the WSJ-

CAM0 dataset. We show that our approach delivers superior seg-

mentation performance than an earlier approach found in the litera-

ture, in particular for higher-order language models.

Index Terms— Automatic speech recognition, Unsupervised

learning, Word Segmentation

1. INTRODUCTION

Conventional speech recognition systems rely on supervised learn-

ing, where the patterns to be recognized (the words) and their acous-

tic building blocks (the phonemes) are known a priori and where

labeled training data are used to learn the models. In unsupervised

vocabulary discovery, however, the word inventory is not known in

advance and the training data come without labels. There are several

applications where such a problem arises, such as the development

of an automatic speech recognition (ASR) system for languages for

which low or zero resources are available. Another application is

teaching a robot an environment-specific vobabulary by speech inter-

action. Further, the techniques can serve as a computational model

for early child language acquisition.

Unsupervised word discovery is essentially based on searching

for recurring sequential patterns in the audio data. The algorithms,

however, should allow for some variation to account for the well-

known inter- and intra-speaker variability in the acoustic realization

of the same linguistic phrase. Several algorithms have been pro-

posed for this task. Segmental dynamic time warping has been used

∗Supported by Deutsche Forschungsgemeinschaft under contract no. Ha
3455/9-1 within the Priority Program SPP1527 ”Autonomous Learning”.

†Supported by NSF grant 1017256.

for discovering repeated acoustic patterns in the input speech [1].

Others rely on a two-stage approach, where first the basic acoustic

building blocks, i.e. the phonemes or similar entities, are discovered

and models are trained for them [2]. Once this has been achieved,

the real-valued speech input can be transcribed into sequences of

symbols, the phoneme labels. The second task is then the discov-

ery of lexical units, i.e., the words, as recurring sequences of these

symbols. This second task is the objective of the paper at hand.

The discovery of word-like lexical units can be achieved by us-

ing a HMM approach [3, 4, 5, 6], while others have suggested a

multigram model [7] or applied non-negative matrix factorization

[8]. An elegant method that overcomes many of the shortcomings

of the aforementioned techniques is based on unsupervised nonpara-

metric Bayesian word segmentation: The lexicon size need not be

specified in advance, as in the HMM approach of [5], it does not

require the tuning of a threshold, as with the multigram approach

[7], and it employs n-gram statistics rather than bag-of-units or co-

occurrence counts as in the NMF approach of [8].

Mochihashi et al. used a nested Pitman-Yor language model [9]

to segment a character input into words [10]. Their algorithm can

be immediately applied to segment an error-free phoneme sequence

into words. However, it is unable to cope with errors in the input.

Neubig et al. extended the approach to noisy input, represented by a

phoneme lattice, employing Weighted Finite State Transducers (WF-

STs) [11]. However, for an exact implementation, the computational

complexity becomes intractable for language models of order larger

than unigram [12]. In this contribution we therefore investigate a

suboptimal, iterative approach, which alternates between determin-

ing the most probable phoneme sequence given the current estimate

of the language model and carrying out language model estimation

and word segmentation on that phoneme sequence. While first re-

sults on artificially noisified character lattices have been presented

in [12], several extensions are presented here to achieve competitive

results on real phoneme lattices produced by an ASR engine. In the

results section we will show that this approach delivers similar word

discovery results as the one of [11] for unigram language models

while it is significantly better for bigram language models. We will

also discuss the impact of the density of the phoneme lattice on the

performance of word discovery for different language model orders.

2. WORD DISCOVERY FROM PHONEME INPUT

The objective function of speech recognition is the posterior proba-

bility of the word sequenceW given the acoustic inputX . Usually a

language model, which consists of a word list and word (sequence)

probabilities is employed to support the recognition. We make this

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4085



knowledge explicit in our notation by conditioning the posterior on

the language model (LM) estimate Ĝ:

Ŵ = argmax
W

P
(

W |X, Ĝ
)

= argmax
W

p
(

X|W, Ĝ
)

P
(

W |Ĝ
)

. (1)

Here, p(X|W, Ĝ) is the acoustic model likelihood, while the lexicon

probability P(W |Ĝ) is computed using the LM.

In large vocabulary speech recognition the acoustic mod-

els of words are obtained by concatenating the acoustic models

of phonemes according to a pronunciation dictionary. Thus the

phonemes are introduced as a hidden variable [11]:

Ŵ =argmax
W

∑

Y

p (X|Y ) P
(

Y |W, Ĝ
)

P
(

W |Ĝ
)

. (2)

Here p(X|Y ) is the acoustic model probability for phonemes Y ,

while P(Y |W, Ĝ) is a pronunciation lexicon probability, which is

nonzero only if the concatenation of the phonemes Y gives the hy-

pothesized word sequence W . The above optimization is usually

approximated by searching for the most likely phoneme sequence:

Ŵ ≈ argmax
W,Y

p (X|Y ) P
(

Y |W, Ĝ
)

P
(

W |Ĝ
)

. (3)

We now turn to the estimation of the LMG. In the zero resource set-

ting considered here it must be estimated on the very same acoustic

data, whose recognition it is supposed to support. In our approach it

is estimated in a Bayesian manner from the corpus W of phoneme

strings that have been segmented into words:

Ĝ = argmax
G

P (G|W)

= argmax
G

P (W|G) P (G) . (4)

P(W|G) is the word likelihood given the LM probabilities and

P(G) is the prior for the LM. As the LM G we use the Nested

Pitman-Yor Language Model (NPYLM) and set the prior accord-

ingly. The NPYLM is briefly described in Section 3.

Looking at eqs. (3) and (4), we see that for the search for the

most probable word sequence, the language model estimate Ĝ is re-

quired, while the estimation of Ĝ requires the transcription of the

input data in terms of segmented phoneme sequences. To solve this,

we propose an iterative approach, which is described in Section 4.

3. NESTED PITMAN-YOR LANGUAGEMODEL

In Bayesian language modeling an a priori probability P (G) of

the language model is required, see eq (4). For this purpose the

Pitman-Yor process has been proposed, which produces power-law

distributions which more closely resemble the statistics found in

natural languages than the probabilities produced by Dirichlet distri-

butions [13]. An n-gram language model G
w

i−1

i−n+1

is a multinomial

distribution of probabilities for the N words of the vocabulary:

G
w

i−1

i−n+1

= {g
wi=1|wi−1

i−n+1

, . . . , g
wi=N|wi−1

i−n+1

}. Here, the sub-

script denotes the context u = wi−1

i−n+1, i.e., the preceding n − 1
words. In the hierarchical Pitman-Yor process G

w
i−1

i−n+1

is modeled

as a draw

G
w

i−1

i−n+1

∼ PY (dn, θn, Gw
i−1

i−n+2

) (5)

from a Pitman-Yor process with discount parameter dn, strength pa-

rameter θn and base measure G
w

i−1

i−n+2

[9]. While the discussion

of the first two parameters is beyond the scope of this paper it is

important to note that the base measure, which corresponds to the

expected probability distribution of the draws, is set to the language

modelG
w

i−1

i−n+2

of the parent (n−1)-gram. This process is repeated

until the parent LM is a zerogram. Since in word segmentation the

vocabulary size is not known in advance the zerogram cannot be

specified. It is therefore replaced by the likelihood for the word be-

ing a phoneme sequence calculated by a phoneme language model

H ′, where again a hierarchy of phoneme language models is built up

to some order m. The resulting structure is the NPYLM G, which

consists of a hierarchical Pitman-Yor LM (HPYLM) for words and

a HPYLM for phonemes, the latter denoted by H ′.

4. ITERATIVE OPTIMIZATION

To solve the chicken-and-egg problem outlined in Section 2 we have

proposed an iterative approach in [12]. While this delivered good

vocabulary discovery results on input character sequences that have

been articficially noisfied by adding character alternatives to the lat-

tice drawn uniformly at random [12], the performance obtained on

real phoneme lattices produced by an ASR engine turned out to be

disappointing. The reason is probably that the phoneme errors of a

recognizer are by no means uniformly distributed.

In the following we therefore propose two modifcations which

produced significantly better results on real lattices. The first modi-

fication is to use separate language models for phoneme recognition

and for word segmentation. The latter is the NPYLMG, which con-

sists of HPYLMs for words and phonemes, which are nested, while

the former is a HPYLMH for phonemes only. The second modifica-

tion is to increase the language model order only after ksw iterations

instead of starting with a high-order LM upfront. The following al-

gorithm summarizes the proposed iterative approach to vocabulary

discovery:

Algorithm 1 Iterative vocabulary discovery from raw speech

Input: X , ksw
Output: Y,W, G,H

Initialization: Set G,H to phoneme zerograms, k = 1
while k ≤ kmax do

1) Transcribe each speech utterance X into phoneme sequence

Y using HPYLM H , resulting in a corpus Y of phoneme

strings: X
H
→ Y

2a) Carry out word segmentation on the phoneme strings, using

the NPYLM G, resulting in a corpus W of phoneme strings

segmented into words: Y
G
→ W

2b) Re-estimate the NPYLM language model G and the

HPYLM phoneme language model H : W → G,H

if k = ksw then

Increase language model orders

end if

k = k + 1
end while

The first step in the repeat loop is carried out by a phoneme

recognizer. However, to save the computational effort of repeated

phoneme recognition, a phoneme lattice is produced by the ASR

engine in the first iteration, and the updated HPYLM H is applied

by rescoring in later iterations. Then the most probable phoneme

4086



string is extracted from the lattice using Viterbi decoding. Tasks 2a)

and 2b, i.e., word segmentation and language model estimation, are

carried out on the currently most probable phoneme sequence using

the algorithm of [10].

The motivation for using different LMs for phoneme recognition

and word segmentation is twofold. First, the phoneme recognizer

should use the best phoneme LM that is available. The NPYLMG is

a nested LMwhich contains probabilities of words and of phonemes,

while the latter has been estimated on the parts of the input phoneme

sequence generated by the base distribution [10]. The phoneme LM

part of G is thus only trained on a small subset of the overall corpus.

Furthermore, this subset will most likely not represent the statistics

of the whole corpus well. On the other hand H is a pure phoneme

LM trained on the whole segmented corpus Y . It should thus be

more powerful. Second, we observed in the experiments that while

a high model order n of the phoneme n-gram LM is beneficial for

ASR, it is not so for word segmentation: here, better segmentation

results were achieved if the phoneme LM part of G had a low order

in the initial iterations. The reason for the worse performance of

word segmentation using high-order n-grams is probably that, due

to the errors in the input phoneme strings, not much consistency can

be found in long sequences of phonemes.

It is important to note that the phoneme LM H contains a word

end tag, whose probability is trained along with the phoneme proba-

bilities. By doing so, some information about the word segmentation

is exploited in the phoneme recognition, which turns out to be quite

beneficial.

Successively increasing the LM orders can be motivated as fol-

lows. Higher-order LMs deliver better segmentation results than

low-order LMs if the input sequence is noisefree [12]. On the other

hand initialization of higher-order LMs from noisy input is more dif-

ficult and is likely to lead to convergence to a local optimum. Start-

ing with low orders and increasing the orders apparently leads to

convergence to a better optimum.

5. WFST BASED IMPLEMENTATION

As proposed in [11] we use a WFST for calculating the probability

of every possible segmentation for an input sentence. The WFST

itself is composed of two WFSTs: The first is the lexicon WFST,

which stores already discovered words and also all possible yet un-

seen words that are contained in the presented input sentences. This

WFST is responsible for generating all possible segmentations into

known and unknown words. A recurring phoneme sequence is trans-

duced into a known word, a phoneme sequence observed for the

first time is considered an unknown word and is passed through,

only adding a word end tag after the last phoneme. To generate

this lexicon WFST our algorithm analyses the phonetic transcrip-

tions of all utterances of the corpus to decide if a phoneme sequence

is a previously seen sequence and thus a known word or not. This

is done to avoid hypothesizing already known words as unknown

words again, as this would lead to falsely calculated probabilites for

a given phoneme sequence. This is in contrast to [11], where the

possible segmentation contains both variants: one with the phonetic

sequence replaced by the known word and one with the same se-

quence as an unknown, newly hypothesized word.

If the input phoneme string of an utterance were replaced by

a phoneme lattice to allow for alternative transcriptions, the analy-

sis for known words would for all but toy lattices quickly become

overwhelmingly large rendering the approach computationally in-

tractable. For this reason the analysis is only carried out on the most

probable phoneme sequence.

The approach in [11] does not face this computational issue.

However, it leads to wrongly computed probabilities for word LMs

in G higher than unigram, as was discussed in [12].

The second WFST is the language model and it is designed in a

similar way as in ASR as a weighted finite state acceptor. It is used to

calculate the likelihood for every possible segmentation when com-

posing it with the lattice produced by composing the input lattice and

the lexicon. The language model WFST is designed to represent the

structure of the NPYLM and calculates the probabilities accordingly.

The structure is the same as proposed in [11].

6. EXPERIMENTAL RESULTS

For the experiments a monophone HMM acoustic model was trained

using the WSJCAM0 training set comprising 7861 sentences. De-

coding was carried out on a subset of the WSJCAM0 training set,

which consisted of 5628 sentences containing about 10 hours of au-

dio, using the monophone models and a zerogram phoneme LM,

producing a lattice at the output. We chose to use the training data

because it contains more data than the test and evaluation sets. In our

view this does not lead to overly optimistic results compared to a test

on independent data, because about the same phoneme error rate of

33% was achieved as on the test and evaluation data. The size of the

vocabulary is about 10k words.

For evaluation we used the word segmentation token F-score,

where a higher F-score indicates better word discovery performance.

The number of correct words in the segmented phoneme sequence is

determined by aligning the segmented words and the reference string

according to the minimum Levenshtein distance.

To better assess the performance of the segmentation algorithms,

lower and upper bounds for the F-score were determined as follows.

To arrive at a lower bound the single best path was extracted

from the phoneme lattice and the segmentation algorithms were run

on this resulting phoneme string. This corresponds to the segmen-

tation result obtained when only doing step 2a) and 2b) of the algo-

rithm 1, where the phoneme recognition was based on a zerogram

phoneme LM. Clearly, if the proposed iterative optimization on the

lattice is of any use, it should deliver a higher F-score than this lower

bound.

To obtain an upper bound on the F-score, the path with the min-

imal edit distance to the ground-truth transcription was extracted

from the lattice. Its phoneme error rate is called lattice phoneme

error rate (L-PER) in the following. The word segmentation per-

formance on this phoneme string is the best that can possibly be

achieved by algorithm 1. No better performance is possible for the

given input lattice, as no phoneme string with a smaller phoneme er-

ror rate is present in the given lattice produced by the ASR decoder.

To study the impact of the L-PER on the word segmentation

performance lattices of different size were generated by chopping off

all paths of an initially dense lattice, whose likelihood was exp(X)
times worse than the likelihood of the best path, were X ranged

from 1 to 10 with a stepsize of 1. By doing so, lattices with different
L-PER were generated with the smallest L-PER for the most dense

lattice.

To further set the results into perspective we compared the pro-

posed algorithm with the algorithm proposed in [11] using the freely

available software published with the paper [14].

Table 1 summarizes the different setups. We ran all algorithms

for kmax = 100 iterations. After ksw = 35 iterations the switch to

the higher-order LMs was performed for setup (1). The resulting F-

scores are shown in Fig. 1 as a function of the L-PER of the input

lattice for different configurations.

4087



Table 1. Order of the LMs for the different setups

G H ′ H algorithm

• (1) 1 → 2 2 → 8 4 → 8 proposed

H (2) 1 2 4 proposed

⋆ (3) 1 2 - [11, 14]

� (4) 2 8 - [11, 14]

(5) 1 2 - [12]

(6) 2 8 8 proposed

 

 

0

5

10

10

15

20

20

25

30

30

35

40

45

28 26 24 22 18 16 14 12

F
-s
co
re
s
[%

]

L-PER [%]

(1)

(2)

(3)

(4)

Fig. 1. F-score over L-PER for different setups, see Table 1 for ex-

planation. The dashed lines show the bounds for each configuration.

It can be observed that the F-score increases with decreasing L-

PER for both the proposed and reference algorithm. Both algorithms

are able to extract a path from the lattice with a lower phoneme er-

ror rate than the initial single best path, which was obtained from a

zerogram phoneme LM. Obviously, the LM estimated on the error-

prone phoneme output is indeed helpful as it is able to improve the

phoneme recognition of the ASR decoder. However, the gain ob-

tained with the proposed algorithm is larger than the one obtained

with [11], in particular with a bigram word LM in G.

The better bigram result is in contrast to the results reported in

[15], where in case of noisy input an unigram word model performed

better than a bigram word model. Our approach therefore seems to

be more robust against noisy input. The reason for this might be

the fact that the bigram word model is initialized with the unigram

segmentation result and further in the structure of the NPYLM with

an effective smoothing and fallback strategy. As the F-score for the

bigram model is the highest, our approach seems promising because

with error free text higher order LMs have been shown to signifi-

cantly outperform lower order LMs [16]. We expect the same thing

to happen when the lattices have a lower PER on the single best path.

Figure 2 shows the values of the performance measures over the

course of the iterations for our proposed algorithm. It can clearly

be seen that the switch after ksw = 35 iterations improves the re-

sults almost immediately. Without switching the performance would

not increase significantly after the 30th iteration. Experiments also

showed that starting with the higher-order LMs from the first itera-

tion led to significantly lower performance.

Table 2 summarizes the final results for the different algorithms

and setups for the lattice with the lowest L-PER. Additionally, we

iterationiteration

 

 

00 1010
15

20

20

20
25

25

26

27

28

29

30

30

30

35

4040 5050 6060 7070 8080 9090 100100

PER

P
E
R
[%

]

F
-s
co
re

/
P
re
ci
si
o
n
/
R
ec
al
l
[%

]

F-scorePrecision Recall

ksw = 35

Fig. 2. Performance measures over iterations for setup (1)

Table 2. Results summary for L-PER≈ 10.5%: legend, see Fig. 1

• (1) H (2) ⋆ (3) � (4) (5) (6)

F-score 25.1 21.8 20.8 10.2 13.9 18.2
Recall 21.4 21.4 20.3 15.3 12.1 14.2

Precision 30.4 22.1 21.7 7.7 16.5 25.1
PER 25.5 26.9 28.4 26.8 32.4 24.7

WER 79.8 86.2 91.5 183.9 89.7 86.2

present the word error rate (WER) on the segmented result. It can

clearly be seen that our approach delivers the best performance w.r.t.

nearly all performance measures with setup (1). Only the PER is

better when starting with a high order LM (setup (6)). This is fol-

lowed in terms of the F-score, recall and WER when using setup (2).

While the approach of [11] with setup (4) delivers a low phoneme

error rate, it unfortunately delivers a low word segmentation perfor-

mance compared to the setup (3). The table also contains the results

of our earlier algorithm (5) [12], which have been significantly im-

proved with the techniques described in this paper. Comparing setup

(6) and (1) shows that starting with higher order, results in worse

performance compared to model order switching.

Finally we counted the number of correct words in the lexicon

in the final result for setup (1). We achieve a lexicon precision of

13.6%, a lexicon recall of 19.3% resulting in a lexicon F-score of

16.0%. Out of the 100 most often found words, 70% were cor-

rect words. Our implementation needed an average of 150 seconds

per iteration with the lower model orders and 450 seconds for the

higher model orders, resulting in a runtime of about 10 hours for the
100 iterations on a single core of an Intel(R) Xeon(R) E5-2640 at

2.50GHz. Therefore we are able to process the audio data with a

realtime factor of one.

7. CONCLUSIONS

We have presented an approach to unsupervised word segmentation

on phoneme lattices produced by an ASR decoder. Using an iterative

approach which alternates between extraction of the best phoneme

sequence from the lattice and word segmentation, introducing a sep-

arate phoneme language model for phoneme lattice rescoring, and

increasing the model orders only after several iterations have been

performed using a low-order LM for word segmentation in the ini-

tial iterations, we were able to significantly improve the results com-

pared to our former version [12]. It is also shown to be superior

to an existing approach from the literature, in particular when using

bigram word language models, while at the same time staying com-

putationally tractable. This work is inspired by the work of Neubig

et al. [11] and based on the work of Mochihashi et al. [10] who ex-

tended the work of Teh et al. to the unsupervised case. It contributes

to the research of zero-resource speech technologies adding to the

works on unsupervised word discovery summarized in [15].

4088



8. REFERENCES

[1] Alex S. Park and James R. Glass, “Unsupervised pattern dis-

covery in speech,” Audio, Speech, and Language Processing,

IEEE Transactions on, vol. 16, no. 1, 2008.

[2] Sourish Chaudhuri, Mark Harvilla, and Bhiksha Raj, “Unsu-

pervised learning of acoustic unit descriptors for audio con-

tent representation and classification,” in Proc. of Interspeech,

2011.

[3] Aren Jansen and Kenneth Church, “Towards unsupervised

training of speaker independent acoustic models,” in Proc. of

Interspeech, 2011.

[4] Meng Sun and Hugo Van Hamme, “Joint training of non-

negative Tucker decomposition and discrete density hidden

Markov models,” Computer Speech & Language, vol. 27, no.

4, pp. 969–988, 2013.

[5] Oliver Walter, Timo Korthals, Reinhold Haeb-Umbach, and

Bhiksha Raj, “A Hierarchical System For Word Discovery

Exploiting DTW-Based Initialization,” in Automatic Speech

Recognition and Understanding Workshop (ASRU), Dec. 2013.

[6] Sourish Chaudhuri and Bhiksha Raj, “Unsupervised Structure

Discovery for Semantic Analysis of Audio,” in Advances in

Neural Information Processing Systems 25, 2012, pp. 1187–

1195.

[7] Sabine Deligne and Frédéric Bimbot, “Inference of variable-

length linguistic and acoustic units by multigrams,” Speech

Communication, vol. 23, no. 3, pp. 223–241, 1997.

[8] Veronique Stouten, Kris Demuynck, and Hugo Van Hamme,

“Discovering Phone Patterns in Spoken Utterances by Non-

Negative Matrix Factorization,” Signal Processing Letters,

IEEE, vol. 15, pp. 131–134, 2008.

[9] Yee Whye Teh, “A hierarchical Bayesian language model

based on Pitman-Yor processes,” in Proceedings of the 21st In-

ternational Conference on Computational Linguistics and the

44th annual meeting of the Association for Computational Lin-

guistics. Association for Computational Linguistics, 2006.

[10] Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda,

“Bayesian unsupervised word segmentation with nested

Pitman-Yor language modeling,” in Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Process-

ing of the AFNLP: Volume 1-Volume 1, 2009.

[11] Graham Neubig, Masato Mimura, and Tatsuya Kawaharak,

“Bayesian learning of a language model from continuous

speech,” IEICE TRANSACTIONS on Information and Systems,

vol. 95, no. 2, 2012.

[12] Jahn Heymann, Oliver Walter, Reinhold Haeb-Umbach, and

Bhiksha Raj, “Unsupervised Word Segmentation from Noisy

Input,” in Automatic Speech Recognition and Understanding

Workshop (ASRU), Dec. 2013.

[13] Christopher D. Manning and Hinrich Schütze, Foundations of

statistical natural language processing, MIT press, 1999.

[14] Graham Neubig, latticelm, Available at

http://github.com/neubig/latticelm, accessed Apr. 2013,

v0.2.

[15] Aren Jansen, Emmanuel Dupoux, Sharon Goldwater, Mark

Johnson, Sanjeev Khudanpur, Kenneth Church, Naomi Feld-

man, Hynek Hermansky, Florian Metze, Richard Rose, Mike

Seltzer, Pascal Clark, Ian McGraw, Balakrishnan Varadarajan,

Erin Bennett, Benjamin Börschinger, Justin Chiu, Ewan Dun-

bar, Abdellah Fourtassi, David Harwath, Chia-ying Lee, Keith

Levin, Atta Norouzian, Vijayaditya Peddinti, Rachael Richard-

son, Thomas Schatz, and Samuel Thomas, “A summary of the

2012 JHU CLSPworkshop on Zero Resource speech technolo-

gies and models of early language acquisition,” in Proceedings

of the 38th International Conference on Acoustics, Speech, and

Signal Processing, 2013.

[16] Oliver Walter, Reinhold Haeb-Umbach, Sourish Chaudhuri,

and Bhiksha Raj, “Unsupervised Word Discovery from Pho-

netic Input Using Nested Pitman-Yor Language Modeling,”

ICRA Workshop on Autonomous Learning, 2013.

4089


