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ABSTRACT

In this paper, we present a comprehensive study on supervised do-
main adaptation of PLDA based i-vector speaker recognition sys-
tems. After describing the system parameters subject to adaptation,
we study the impact of their adaptation on recognition performance.
Using the recently designed domain adaptation challenge, we ob-
serve that the adaptation of the PLDA parameters (i.e. across-class
and within-class covariances) produces the largest gains. Nonethe-
less, length-normalization is also important; whereas using an in-
domain UBM and T matrix is not crucial. For the PLDA adaptation,
we compare four approaches. Three of them are proposed in this
work, and a fourth one was previously published. Overall, the four
techniques are successful at leveraging varying amounts of labeled
in-domain data and their performance is quite similar. However, our
approaches are less involved, and two of them are applicable to a
larger class of models (low-rank across-class).

Index Terms— speaker recognition, supervised domain adapta-
tion, PLDA, i-vectors

1. INTRODUCTION

The state-of-the-art in speaker recognition is widely dominated by
the use of i-vectors [1] modeled by variants of Probabilistic Linear
Discriminant Analysis (PLDA) [2, 3, 4, 5, 6, 7]. An i-vector ex-
tractor (in combination with a UBM) is a data-driven front-end that
maps temporal sequences of feature vectors (e.g. MFCCs) into a sin-
gle point in a low-dimensional vector space. To achieve optimal per-
formance, it is normally trained on tens of thousands of speech cuts
from thousands of speakers in multiple sessions. Although training
an i-vector extractor does not require a labeled dataset, it is custom-
ary to use datasets that contain speaker labels and other kinds of
metadata (language, gender) to obtain a balanced training set.

PLDA provides a powerful data-driven mechanism to separate
speaker information from other sources of undesired variability.
Given a large collection of labeled data (speaker labels), PLDA
learns the within-class variability, that characterizes distortions, and
the between-class variability, which characterizes speaker informa-
tion. Then, this knowledge is leveraged to obtain robustness against
the observed distortions, when answering the question of whether a
collection of i-vectors are from the same speaker or not (i.e. speaker
recognition). To achieve this, the PLDA training set must contain
multiple recordings of a speaker under different distortions (channel
distortions, noise, reverberation). Typically, the PLDA systems used
for NIST speaker recognition evaluations [8] are trained on tens of
thousands of speech cuts from thousands of speakers with multiple
cuts per speaker from different sessions.

Assuming such a large amount of resources for every domain of
interest might be prohibitory expensive or even unrealistic. There-
fore, a cold-start strategy for building systems in new domains is
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Fig. 1. Block diagram of speaker recognition system indicating
which parameters are trained in supervised and unsupervised mode.

quite limiting. Alternatively, one could try to bootstrap an exist-
ing resource-rich out-of-domain system, and then require a smaller
amount of in-domain data to adapt it. In [9], using Bayesian adap-
tation, the parameters of an out-of-domain system were successfully
adapted to a domain with low resources. A fully Bayesian approach
was used, and a variational approximation to the intractable poste-
rior was computed using conjugate priors. However, due to com-
putational complexity, the verification scores were computed using
only point estimates of the parameters (expected values).

In this work, we present three alternative adaptation approaches
that directly target point estimates of the parameters, and therefore,
are more straightforward. Also, unlike the approach in [9], two of
them work for models in which the across-class variability is not full
rank. Moreover, our experimental setup allows for a resource-rich
cold-start in-domain system that is used to asses the performance
gap with respect to the out-of-domain system. This facilitates the
study of how fast this gap gets closed in terms of the amount of in-
domain data used. Additionally, we study the optimal amount of
adaptation as a function of the amount of in-domain data.

Looking at Figure 1, we can see that there is opportunity to
also adapt other system parameters. In [10], the authors explored
the impact of: UBM, subspace used for i-vector extraction, length-
normalization, score normalization, and calibration. Here, we also
explore the first three, but, unlike in [10], we make a distinc-
tion between the parameters that require labeled or unlabeled data
(speaker labels). Also, as part of the i-vector length-normalization,
we explore the effects of the required whitening transformation [6].
Overall, the largest improvement is obtained by adapting PLDA and
length-normalization parameters.

The rest of the paper is organized as follows: Section 2 describes
the system architecture. Section 3 introduces the four adaptation
techniques under study. Section 4 describes our experimental setup
and results. Finally, section 5 provides the conclusions.

2. SPEAKER RECOGNITION SYSTEM

Figure 1 shows a block diagram of our state-of-the-art i-vector
speaker recognition system. On top of each block we are showing
the set of parameters that need to be trained. The terms super-
vised/unsupervised indicate if the parameters need to be trained
using a dataset with speaker labels or not. The parameters that do
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not require speaker labels are much easier to adapt since unlabeled
in-domain data is much easier to acquire. In the following, we
briefly describe each block.

2.1. UBM and i-vector extractor

The first two blocks of Figure 1 can be considered as a data-driven
front-end that maps sequences of MFCCs into a low-dimensional
vector [1]. This is accomplished by first training the parameters
{wk,mk,Sk} of a Gaussian mixture model, denoted as Universal
Background model (UBM). The UBM is used to map the sequence
of MFCCs into a single point in a high-dimensional space (typically
around 100K dimensions). The i-vector extractor then uses factor
analysis to perform dimensionality reduction to a low-dimensional
subspace defined by the matrix T. This subspace is learned in an
unsupervised way on a large dataset (normally the same used for the
UBM) and attempts to capture most of the speaker information.

2.2. Length-normalization

The third block of Figure 1 is a pre-processing stage that conditions
the i-vectors so that they conform to the Gaussian modeling assump-
tions of the last block. Length-normalization is a two step process
that Gaussianizes i-vectors [6]. In the first step, the i-vectors are
centered and whitened based on the sample mean and covariance of
training dataset. This produces the global mean m, and the whiten-
ing transform W. In the second step, the centered and whitened
i-vectors are projected into the unit sphere. This produces length-
normalized i-vectors.

2.3. Simplified PLDA (SPLDA)

2.3.1. Modeling

The SPLDA model [6] is a simplified version of PLDA introduced
in [2], where, given a collection of Ji i-vectors from speaker i,Di =
{xi1, . . . ,xiJi}, we prescribe a generative model of the form: xi1

...
xiJi

 =

F
...
F

hi +

 εi1
...

εiJi

 , (1)

with the latent speaker variable hi ∼ N (0, I), and residual εij ∼
N (0,Λ) assumed independent. Moreover, the speaker subspace
matrix F ∈ RD×P is of rank P < D. Under these assumptions,
an i-vector xij ∼ N (0,Γ + Λ) with across-class variability matrix
Γ = FFT , and within-class variability matrix Λ. Note that the rank
of Γ corresponds to the number of columns of F (P ). Also, the joint
distribution of the i-vectors Di is

p(Di|Γ,Λ) = N (Di; 0, F̃F̃T + Λ̃), (2)

where, F̃ corresponds to the first matrix in the right hand side of (1),
and Λ̃ is a block diagonal matrix with blocks set to Λ.

The ability to control the rank of the across-class variability ma-
trix Γ has significant impact in recognition performance. If we allow
P = D, then, Γ becomes full-rank, and SPLDA becomes the two-
covariance model (2-cov) introduced in [3] (i.e., no need to define Γ
in terms of F). Learning the SPLDA (or 2-cov) parameters Γ, and Λ,
requires a large labeled dataset. Note that the 2-cov model requires
a dataset with a number of speakers (and therefore total number of
cuts) larger than the i-vector dimension D. For SPLDA, the number
of speakers only needs to be larger than P , and the total number of
cuts larger than D.

2.3.2. Scoring

The goal of the final block of Figure 1 is to determine whether an
i-vector xt belongs to speaker i or not. In the SPLDA framework,
this is equivalent to asking whether xt was generated from the same
latent speaker variable, hi, asDi or not. This corresponds to a model
selection problem between two alternative generative models. Under
the same-speaker hypothesis,Hs, the generative model assumes that
hi = ht. Under the different-speaker hypothesis, Hd, the genera-
tive model assumes that hi and ht are independently drawn from a
standard Gaussian. Since we are interested in a probabilistic answer,
we compute a log likelihood ratio (LLR) between the two competing
hypothesis:

R(Di,xt) = log
p(Di,xt|Hs)
p(Di,xt|Hd)

= log
p(Di,xt|Γ,Λ)

p(Di|Γ,Λ)p(xt|Γ,Λ)
.

(3)
An efficient computation of this LLR can be found in [11].

3. ADAPTATION APPROACHES

In this section, we present four approaches to adapt the across-class
and within-class covariances (Γ, Λ) of a system trained on out-of-
domain data, using a new set of in-domain data. The first two focus
on to the 2-cov model, and the last two also apply to SPLDA.

3.1. Fully Bayesian adaptation

In [9], following a Bayesian treatment, the 2-cov model parameters
are treated as random variables and a variational approximation to
the intractable posterior is computed using conjugate priors1. The
intractability of the model stems from the fact that the across-class Γ
and within-class Λ matrices are not proportional to each other. The
out-of-domain data is used to define a conjugate prior and, given
in-domain data, an approximate posterior distribution of the 2-cov
model parameters is obtained. This results in a posterior distribution
that combines the information of the out-of-domain prior with the in-
formation provided by the in-domain data. The strength of the prior
is controlled by ignoring the actual counts of the out-of-domain set
an instead prescribing new hyper-parameters to the prior (a more de-
tailed explanation is given in the next section). Although the adapta-
tion mechanism provides an approximate posterior distribution, due
to computational cost, the LLRs are based on point estimates (ex-
pected values) of the 2-cov model parameters.

3.2. Approximate MAP adaptation

For the 2-cov model, when there are a lot of cuts per speaker, the
uncertainty of the latent speaker identity variable µ is very small
and we can treat it as an observed variable (i.e. the sample mean of
Di). Under this assumption, the estimation of the covariance ma-
trices decouples (see the graphical model in Figure 1 of [9]). Also,
since we are only using point estimates for the computation of LLRs,
MAP point estimates of the covariances are the quantities of inter-
est. Using an inverse Wishart distribution IW(Σ|S−1

out, νout) (i.e.,
conjugate prior) with hyper-parameters based on the out-of-domain
covariance, we obtain an adapted covariance as:

Σmap =
Sin + Sout
Nin +Nout

= αΣin + (1− α) Σout (4)

1The authors thank Jesus Villalba for sharing a Matlab implementation of
VB adaptation
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with Nout = νout + D + 1, and α = Nin
Nout+Nin

. Therefore,
Nout represents pseudo-counts and controls the strength of the out-
of-domain prior. The corresponding degrees of freedom νout can be
obtained from it. For our experiments, we parameterize the strength
of the prior through α, which can be mapped back to νout. This
implies that we are ignoring the actual number of counts of the out-
of-domain set. We can particularize the generic equation (4) to the
within-class Λ and across-class Γ covariances using the correspond-
ing in-domain scatter matrix Sin and setting Nin to either the num-
ber of cuts (for Λ) or the number of speakers (for Γ). Note that we
are not modeling the mean since we use centered i-vectors due to
length-normalization. Also, this approach does not require multiple
iterations over the data, as is the case for all of the other approaches
that we explore.

3.3. Weighted Likelihood

In the previous sections we have presented adaptation approaches
for the 2-cov model. However, when the across-class matrix Γ is not
full-rank, an inverse Wishart prior cannot be used. For the SPLDA
model, a fully Bayesian approach could be used by placing a Normal
prior per row of F. However, since due to computational cost, we
are using point estimates of the parameters to compute the LLRs, we
instead propose to use maximum-likelihood (ML) point estimates of
the SPLDA parameters based on a weighted log-likelihood objective

L(Γ,Λ) = α Lin(Γ,Λ) + (1− α) Lout(Γ,Λ), (5)

where L•(Γ,Λ) = 1
N•

∑M•
i=1 log p(Di|Γ,Λ), N• refers to cuts,

and M• to speakers, for either the in-domain or out-of-domain sets.
Note that this approach requires the i-vectors of the out-of-domain
set and not just the parameters learned from it. However, this is not
a big issue due to the small dimensionality of the i-vectors. The
SPLDA parameters are then learned using a modified EM algorithm
to maximize (5). In particular, letting k = 1 index the in-domain
set, and k = 2 the out-of-domain set, in the E-step, we compute the
posterior mean 〈hik〉 and correlation 〈hikhTik〉 of the hidden speaker
variables using the previous values of Fold and Λold. Then, the M-
step results in

F =
( 2∑
k=1

α̇k
Mk∑
i=1

x̄ik〈hTik〉
)( 2∑

k=1

α̇k
Mk∑
i=1

Nik〈hikhTik〉
)−1

,

Λ =
( 2∑
k=1

α̇k
∑
ij

xijkx
T
ijk

)
− F

( 2∑
k=1

α̇k
Mk∑
i=1

x̄ik〈hTik〉
)T
,

(6)
where x̄ik =

∑
j xijk, α̇1 = α

Nin
, and α̇2 = 1−α

Nout
. After each

M-step, we perform a minimum divergence step [12] to accelerate
the convergence.

3.4. SPLDA parameter interpolation

When the in-domain set contains enough data (i.e., total number of
cuts is larger than the i-vector dimension D), a good practical ap-
proximation to the weighted likelihood is to use weighted SPLDA
parameters. That is, use the standard EM algorithm twice to obtain
in-domain and out-of-domain PLDA parameters and then interpo-
late between them. Note that this approach does not require keeping
the out-of-domain i-vectors. In practice, it is possible to use an in-
domain dataset with less thanD cuts to estimate SPLDA parameters
if we regularize Λin to make it positive definite. Note however, that
the rank of Γin will be equal to the number of speakers.

Table 1. Performance as a function of in-domain SRE and out-of-
domain SWB parameters. SPLDA system with rank 400.
!
!
# UBM, T W !,! DCF(10-3) DCF(10-2) EER(%) 
1 SWB SWB SWB 0.682 0.485 6.92 
2 SWB SRE SWB 0.627 0.425 5.55 
3 SWB SRE SRE 0.399 0.235 2.32 
4 SRE SRE SRE 0.425 0.255 2.43 

!
4. EXPERIMENTS

4.1. Datasets

For our experiment, the SRE10 telephone data [8] (condition 5 ex-
tended task) is used as enroll (single cut) and test sets. This evalua-
tion set provides 7,169 target and 408,950 non-target trials. For pa-
rameter training, using Linguistic Data Consortium (LDC) telephone
corpora, MIT-LL 2 has designed a domain adaptation challenge that
exposes the effects of data mismatch in recognition performance.
Two datasets were defined for the challenge: the in-domain SRE set
comprises telephone calls from all speakers taken from the SRE 04,
05, 06, and 08 collections. The out-of-domain SWB set comprises
telephone calls from all speakers taken from the Switchboard-I and
Switchboard-II (all phases) corpora. The SRE set consist of 3,790
speakers (male and female) and 36,470 speech cuts. The distribu-
tion of number of cuts per speaker is not homogeneous and has a
mean of 9.6 and standard deviation of 7.7. On average each speaker
made calls from 2.8 different phone numbers. The SWB set consist
of 3,114 speakers (male and female) and 33,039 speech cuts. The
distribution of number of cuts per speaker is not homogeneous and
has a mean of 10.6 and standard deviation of 7.9. On average each
speaker made calls from 3.8 different phone numbers. Although the
statistics of both datasets are quite similar, the SRE set matches the
SRE10 evaluation set better than SWB. This is mostly attributed to
the evolution of telephone systems, as most of the SWB data was
collected in the 90s and the SRE collection is more recent.

4.2. System setup

The system in Figure 1 uses 40-dimensional MFCCs (20 base +
deltas) with short-time mean and variance normalization. It is con-
figured in a completely gender-independent way. It uses a 2048 mix-
ture UBM with a 600 dimensional i-vector extractor, and a speaker
subspace of 400 dimensions for SPLDA. We report performance in
terms of equal error rate (EER) and/or normalized minimum detec-
tion cost function (DCF) [8] with probability of target trial set to
either 10−2 or 10−3.

4.3. Results

4.3.1. Performance gap

As shown by the first and last rows of Table 1, there is a considerable
gap in performance between a system trained on the out-of-domain
SWB set (row 1), and a system trained on the matched in-domain
SRE set (last row). For the EER, the performance gap is about 3x.
This validates the setup of the domain adaptation challenge and pro-
vide a significant gap to explore the effect of adaptation approaches.

2The authors thank MIT-LL for designing the domain adaptation chal-
lenge. A detailed description and resources (lists, i-vectors, and PLDA
system) are available at: http://www.clsp.jhu.edu/workshops/archive/ws13-
summer-workshop/groups/spk-13/
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Fig. 2. Comparison of 4 adaptation approaches in terms of the
amount of in-domain speakers. Two approaches are applied to the
2-cov model and the other two to SPLDA with 400 dimensional
speaker space. Results averaged over 5 random draws.

4.3.2. UBM, T, and length-normalization

In this section we explore the impact of adapting the parameters that
do not require speaker labels. Comparing rows 3 and 4 of Table 1 we
can evaluate the impact of training the UBM and T on the in-domain
SRE set. The main observation is that the impact is small (this is con-
sistent with [10]). We speculate that using SWB produces slightly
better results due to the disjoint datasets used for i-vector extraction
and PLDA training, but at the moment this is still uncertain. Com-
paring rows 1 and 2, we can see the effects of length normalization.
In the first row, the centering and whitening of the out-of-domain
SWB and the evaluation data are based on SWB statistics. For the
second row, the centering of SWB is based on SWB statistics, but the
evaluation data is centered using SRE statistics. Also, the whitening
of both sets is based on SRE statistics. This strategy of dataset-
dependent centering and common whitening (based on in-domain
statistics) produces the best results.

4.3.3. Adaptation of Γ and Λ

To decouple the effects of adapting Γ and Λ from the choices of
UBM, T, and length-normalization, we use the configurations in
rows 2 and 3 of Table 1 for the remaining experiments. We refer
to 2 as the out-of-domain system (i.e. using all SWB to train Γ and
Λ), and to 3 as the in-domain system. The red horizontal lines of
Figure 2 are the performance of the out-of-domain systems (SPLDA
is solid and 2-cov is dashed), and represent the starting point. The
green lines are the performance of the in-domain systems, and repre-
sent the target performance. We can see that using a full-dimensional
speaker space (600) provides slightly better results. This is quite
unusual, since in other evaluation setups [6], using a low-rank Γ
(∼200) was better. However, during our SRE12 participation, we
observed that for gender-independent PLDA, 400 dimensions was
better than 200. Nonetheless, to exercise the two adaptation tech-
niques that apply to low-rank Γ, we also present results for SPLDA.

Figure 2 also shows the performance of the 4 adaptation tech-
niques for different amounts of in-domain speakers, and optimal
adaptation α. Although it is possible to use different amounts of
adaptation for each covariance matrix, we tied them together to fa-
cilitate the analysis. The results are presented in terms of EER and
are averaged over 5 random draws from the entire in-domain SRE.
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Fig. 3. Grid search to show the optimal value of α as a function of
the number of speakers (on average 10 cuts per speaker). Results
averaged over 5 random draws.

We can see that the four techniques perform similarly and leverage
the increasing amount of in-domain data. However, we observe a
clear diminishing return as the amount of data grows. For example,
using 10 speakers we recover about 45% of the gap, and we need
around 1000 speakers to recover 90%. For the techniques specific to
the 2-cov model (variational and MAP), we observe that the simpler
MAP approximation initially gets close to the variational approach,
but underperforms as the amount of in-domain adaptation data in-
creases. For the SPLDA system, the interpolated SPLDA approach
is as good as weighted likelihood without requiring access to the
out-of-domain i-vectors. Note that, except for MAP, when all the in-
domain data was provided, the performance was slightly better than
that of the target performance. This implies that, even when using
the complete set of in-domain data, α = 1 was not optimal and the
out-of-domain SWB data was helpful. In the next section we explore
system performance with respect to α.

4.3.4. Amount of adaptation

Figure 3 shows the average EER (over 5 random draws) of the 2-
cov model adapted with the parameter interpolation method. The
performance is presented as a function of the amount of in-domain
data, as well as the adaptation amount α. As expected, the more in-
domain data, the larger α. Also, the error surface is quite smooth as
a function of α. This indicates that, for this adaptation challenge, the
selection of the optimal α is not hard, and therefore, a small held-out
set should be sufficient to get a good estimate. The same behavior
was observed for the other adaptation techniques.

5. CONCLUSION

In this paper, we presented a comparative study of four supervised
domain adaptation techniques. Three of them were proposed in this
work, and a fourth one was previously published. The four ap-
proaches were experimentally validated on the recently designed
domain adaptation challenge. Overall, the four techniques were
successful at leveraging varying amounts of labeled in-domain data.
The performance was quite similar across techniques. We observed
that among all the parameters of a state-of-the-art i-vector recog-
nizer, the adaptation of the across-class and within-class covariances
(which required labeled data) produce the largest gains. Nonethe-
less, length-normalization was also important; whereas using an in-
domain UBM and T matrix was not crucial.
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