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ABSTRACT

Recently, a new version of the iVector modelling has been proposed
for noise robust speaker recognition, where the nonlinear function
that relates clean and noisy cepstral coefficients is approximated by
a first order vector Taylor series (VTS). In this paper, it is proposed to
substitute the first order VTS by an unscented transform, where un-
like VTS, the nonlinear function is not applied over the clean model
parameters directly, but over a set of sampled points. The result-
ing points in the transformed space are then used to calculate the
model parameters. For very low signal-to-noise ratio improvements
in equal error rate of about 7% for a clean backend and of 14.50%
for a multistyle backend are obtained.

Index Terms— Noise Robust Speaker Recognition, Unscented
Transform, Vector Taylor Series, iVector

1. INTRODUCTION
Speaker recognition is one of the most important research fields in
the speech technology industry. The main applications are found in
banking, defense, forensics, video games, and also as front-end of
other speech-related tasks like speech recognition. During the last
decade, important technological advances have been achieved in this
field. One important milestone was the development of the joint
factor analysis (JFA) algorithm, a technique that makes possible to
model simultaneously the inter- and intra-speaker variabilities of the
features [1]. Currently, a new dimensionality reduction technique in-
spired by JFA is used, which allows representing a speech utterance
by a low-dimension fixed length vector, or iVector, which is used for
recognition [2]. The state-of-the-art recognizer is called probabilis-
tic linear discriminant analysis (PLDA), and also allows modelling
inter- and intra-speaker variability in the iVectors [3].

All these advances have brought a substantial improvement in
performance and the researchers start to focus on other challenges.
One important research direction is speaker recognition in noisy en-
vironments. This is not a new topic in speaker recognition [4, 5], but
the interest currently lies in making the high-accuracy state-of-the-
art JFA-based techniques robust to noise.

In [6], the authors present the PRISM evaluation set, a database
to experiment speaker recognition systems under several noisy con-
ditions with the aim of providing a common testbed to the commu-
nity. They include language, channel, speech style, and vocal effort
variabilities, also seen in NIST SRE evaluations, and other types not
available on standard databases, like severe noise, and reverberation.
In [7], a subset of this database is tested on different signal-to-noise
ratios (SNR) and it is shown how the performance of a PLDA sys-
tem modelling iVectors extracted from Mel-frequency cepstral co-
efficients (MFCC) is quickly degraded when the SNR decreases. It

is observed that adding noisy data to the PLDA training gives rela-
tive improvements of up to 30% compared to the case where only
clean data are used. The same behaviour is observed with prosodic
features. By adding noisy data to train the iVector extractor no sig-
nificant gains are obtained.

In [8], the authors propose a first order vector Taylor series
(VTS) approximation [9] to extract noise-compensated iVectors.
The approach is inspired by the VTS successfully applied in the
field of automatic speech recognition (ASR) to compensate the
models distorted by the nonlinear effects of noise in the cepstral
domain [10, 11]. For the same PRISM subset as above, relative im-
provements of up to 80% compared to a state-of-the-art system with
cepstral mean and variance normalization (CMVN) are observed
for the speaker recognition problem, however the training process
is very slow. To make it lighter, in [12] a simplified VTS (sVTS)
version is proposed, where most of the improvement is kept, while
the computational load is largely reduced.

In this work, the unscented transform (UT) is presented as a new
approach to approximating the nonlinearity caused by noise in the
cepstral domain in order to adapt the model parameters to noise. We
compare UT to the first order VTS approximation. UT is a method
to propagate the mean and covariance information through nonlinear
tansformations [13]. It is more accurate, easier to implement, and in
the same order of computational expense as the linearization used
with VTS, and it has been already proven to be useful for noise ro-
bust ASR [14, 15]. As shown in the experimental part of the work,
UT is especially useful for very low SNR, when the nonlinear dis-
tortion is stronger.

The rest of the paper is organized as follows: in section 2 a de-
scription of the iVector approach in noisy environments is given, to-
gether with the role of VTS and UT to approximate the nonlinear
relationship between clean and noisy MFCC; in section 3 the exper-
imental part of the work is shown; and in section 4 the conclusions
are drawn.

2. UNSCENTED TRANSFORM AND VTS IN AN
IVECTOR-BASED SYSTEM

2.1. Standard iVector System

In the standard iVector extraction process, it is assumed that the in-
put features, in our case MFCCs, follow a Gaussian mixture model
(GMM) distribution in which the mean vector of each Gaussian is
assumed to be utterance-specific. Thus the MFCCs of utterance i,
x(i), are evenually modelled as

x(i) ∼
∑
k

πkN (µxk + Tkω
(i),Σxk ), (1)
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being πk, µxk , and Σxk , the weight, mean, and covariance, re-
spectively, of Gaussian k of a pre-trained GMM, the universal
background model (UBM), Tk a low-rank matrix spanning a sub-
space referred to as total variability subspace that describes in-
tersession variability in the space of GMM mean parameters, and
ω(i) a segment-specific low-dimension latent variable with standard
normal distributed prior.

The training of this model is performed via maximum likeli-
hood (ML) in two parts. Firstly, the UBM is pre-trained using the
expectation-maximization (EM) algorithm, and πk, µxk , and Σxk

are obtained for all the Gaussians. Secondly, the sufficient statistics
are computed as defined in [2] using fixed Gaussian alignments given
by the UBM, and they are used for the training of the Tk matrices,
which is also performed with the EM algorithm [2].

The iVector of utterance i is defined as the maximum a posteriori
(MAP) point estimate of ω(i). The posterior probability distribution
of ω(i) is Gaussian with mean, 〈ω(i)〉, and covariance, L(i), and thus
the iVector is equal to 〈ω(i)〉. The expressions to compute it are

〈ω(i)〉 = L(i)
∑
k

T̃T
k f̃

(i)
k (2)

L(i) = (I +
∑
k

N
(i)
xk T̃T

k T̃k)−1 (3)

where Σxk = PxkP
T
xk, with Pxk lower triangular by Cholesky

decomposition, T̃k = P−1
xk T̃k, and

N
(i)
xk =

∑
t

γ
(i)
xt (k), f̃

(i)
k = P−1

xk

∑
t

γ
(i)
xt (k)(x

(i)
t − µxk) (4)

are the zeroth and whitened first order sufficient statistics pre-
collected using the UBM as proposed in [16]. The first order
statistic whitening (µ(i)

xk subtraction and multiplication by P−1
xk ) not

only leads to a more efficient implementation, but it also plays an
important role in the sVTS approach described in section 2.3.

2.2. VTS-Based iVector System for Noisy Environments

According to the model of the environment presented in [9], a clean
MFCC vector affected by additive and convolutional noise is dis-
torted as

y = x + h + g(n− x− h), (5)

where y, x, h, and n are the cepstral vectors of the noisy speech,
clean speech, channel, and additive noise, respectively, and g is the
nonlinear function defined as

g = C ln(1 + exp(C†(n− x− h))), (6)

with C and C† the discrete cosine transform matrix and its pseudo-
inverse, respectively. The corresponding relationship in the model
space for the UBM means [11], assuming that both types of noise
follow a Gaussian distribution, is approximated by a first order VTS
expansion at (µxk0, µh0, µn0),

µ(i)
yk ≈ µxk0 + µ

(i)
h0 + g(µ

(i)
n0 − µxk0 − µ(i)

h0)

+G
(i)
k (µxk − µxk0) + G

(i)
k (µ

(i)
h − µ

(i)
h0)

+F
(i)
k (µ(i)

n − µ
(i)
n0),

(7)

where Gk is the Jacobian of g with respect to xk, and with respect
to h, and Fk with respect to n. They are defined as

G
(i)
k = C · diag(

1

1 + exp(C†(µ
(i)
n0 − µxk − µ

(i)
h0))

) ·C†, (8)

F
(i)
k = I −G

(i)
k . (9)

To compute the means of the noise-adapted UBM, µyk0, the VTS is
evaluated at (µxk = µxk0, µh = µh0, µn = µn0),

µ
(i)
yk0 ≈ µxk0 + µ

(i)
h0 + g(µ

(i)
n0 − µxk0 − µ(i)

h0) (10)

The relationship of the UBM covariances [11], following the same
reasoning as for the mean, is

Σyk ≈ G
(i)
k ΣxkG

(i)T
k + F

(i)
k Σ(i)

n F
(i)T
k , (11)

where Σ
(i)
n is the additive noise covariance matrix, and Σ

(i)
h is set

to zero since the channel is considered to be fixed. Finally, the mean
and covariance of the model for the noisy MFCC first derivative (∆)
are calculated with the continuous-time approximation also used in
[11]. That is,

µ
(i)
∆yk
≈ G

(i)
k µ

(i)
∆xk

(12)

Σ
(i)
∆yk
≈ G

(i)
k Σ∆xkG

(i)T
k + F

(i)
k Σ

(i)
∆nF

(i)T
k , (13)

and identically for the MFCC second derivative (∆2), substituting
∆ by ∆2.

One important role of the VTS approximation is to make the
EM objective function of the noise-adapted UBM differentiable, so
closed form update formulae of the model parameters are obtained.
As per [8] the objective function becomes

Q =
∑
i

∑
t

∑
k

γ
(i)
yt (k)[−1

2
ln |Σ(i)

yk |

−1

2
(y

(i)
t − µ

(i)
yk0)T (Σ(i)

yk )−1(y
(i)
t − µ

(i)
yk0)],

(14)

In order to include the total variability subspace in the model
of the noisy MFCC of every utterance, y(i), µxk is substituted by
µxk0 +Tkω

(i) in (7), and also considering (11), it can be shown that

y(i) ∼
∑
k

πkN (µ
(i)
yk0 + G

(i)
k Tkω

(i),Σ(i)
yk ). (15)

This model is trained using the EM algorithm and the equations are
detailed in [8].

2.3. Simplified VTS

The major drawback of the VTS approach presented in previous sec-
tion is the computational cost of the EM training algorithm for the
total variability subspace Tk of (15). In particular, in the M step the
computation of the Kronecker product and large matrix inversion
given in equation (18) of [8] is several orders of magnitude more
computationally and memory demanding than the calculations re-
quired for training the standard model of (1). The main differences
between the two techniques are that in the VTS approach the UBM
mean and covariance are utterance-dependent, and that the total vari-
ability subspace is adapted to noise differently for each utterance
through the term G

(i)
k Tk in (15).

In [12], a new approach is proposed that largely simplifies the
equations and reduces the computational cost, the sVTS. In the
sVTS, first, the UBM is adapted to each file as described in section
2.2. Then, the zeroth and whitened first order sufficient statistics of
utterance i are collected over its noise-adapted UBM as

N
(i)
yk =

∑
t

γ
(i)
yt (k), f̃

(i)
yk = P

(i)−1
yk

∑
t

γ
(i)
yt (k)(y

(i)
t − µ

(i)
yk ),

(16)
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where Σ
(i)
yk = P

(i)
ykP

(i)T
yk by Cholesky decomposition. In this way

the dependence on µ(i)
yk , Σ

(i)
yk , and G

(i)
k completely disappears from

the training, and the equations, and therefore the complexity, are re-
duced to the ones of the standard iVector training algorithm. Also for
iVector extraction equations (2) and (3) can still be used, but replac-
ing the sufficient statistics defined in (4) with those defined in (16).
This transformation of the sufficient statistics moves the noise com-
pensation operation to the domain of the sufficient statistics, while
the former VTS approach introduced in [8] is a model domain com-
pensation technique. In spite of the complexity reduction, the ex-
periments made in [12] show that the sVTS preserve most of the
improvements obtained with the VTS-based iVector model.

2.4. Simplified Unscented Transform

The UT is used to substitute the first order VTS in the model parame-
ter adaptation. The goal is to obtain more accurate estimates of µ(i)

yk

and Σ
(i)
yk when the linear approximation is not good enough. The

first UT method explained in [14] is followed here. Given the clean
and noisy mean cepstral estimates, µxk0 and µ(i)

n , an augmented sig-
nal ŝ

(i)
k = [x̂Tk n̂(i)T ]T is built by sampling as

ŝ
(i)
k0 = [µTxk0 µ(i)T

n ]T

ŝ
(i)
kj = [µTxk0 + (

√
2DΣxk )j µ(i)T

n ]T

ŝ
(i)

k(j+D) = [µTxk0 − (
√

2DΣxk )j µ(i)T
n ]T

ŝ
(i)

k(j+2D) = [µTxk0 µ(i)T
n + (

√
2DΣ

(i)
n )j ]

T

ŝ
(i)

k(j+3D) = [µTxk0 µ(i)T
n − (

√
2DΣ

(i)
n )j ]

T

(17)

where D is the feature dimension, j = 1...D, therefore ŝ
(i)
k con-

tains 4D+1 2D-dimension sampled vectors, and (A)j denotes the jth
column of matrix A. Observe that the means and covariance matri-
ces calculated from these samples match the actual means and co-
variances from which the samples were derived. Next, the sampled
points are transformed using the nonlinear function

(f (̂s
(i)
k ))j = (ŷ

(i)
k )j = (x̂k)j + µ

(i)
h0 + g((n̂(i))j − (x̂k)j − µ(i)

h0)
(18)

to obtain the noisy version of the sampled points. The mean and
covariance of the noise-adapted UBM are the mean and covariance
of the 4D+1 D-dimension vectors ŷ

(i)
k , respectively,

µ̂(i)
yk =

∑4D
j=0 (ŷ

(i)
k )j

4D + 1
, (19)

Σ̂(i)
yk =

∑4D
j=0 ((ŷ

(i)
k )j − µ̂(i)

yk )((ŷ
(i)
k )j − µ̂(i)

yk )T

4D + 1
. (20)

Likewise, the Jacobians Gk and Fk, used in the update formulae of
the noise parameters and in the continuous-time approximation of
the ∆ and ∆2 model parameters, also depend on the sampled points
and are calculated as

Ĝ
(i)
k =

∑4D
j=0 C · diag( 1

1+exp(C†·((n̂(i))j−(x̂k)j−µ
(i)
h0

))
) ·C†

4D + 1
(21)

F̂
(i)
k = I − Ĝ

(i)
k (22)

Once the noise-adapted UBM mean and covariance, and the Jaco-
bians are estimated, the rest of the training is exactly the same as for

the VTS case. To avoid the computational complexity of the exact
noise-compensated iVector extraction presented before, the simpli-
fied version is also used with the UT. Hence, this approach is named
simplified UT (sUT). Note that the augmented signal contains infor-
mation only of the cepstrum and not of the derivatives. These are
derived through the Jacobian Ĝ

(i)
k as per (12) and (13).

3. EXPERIMENTAL PART

Our features are 20 MFCC coefficients (with C0) including first and
second derivatives, extracted in 25 ms long windows every 10 ms.
A diagonal UBM with 512 components is trained with data com-
ing from NIST SRE ’04, ’05, ’06, and ’08 evaluations. The 400-
dimension iVector extractor is trained with data coming from NIST
SRE ’04, ’05, ’06, ’08, Fisher, and Switchboard. A simplified PLDA
(sPLDA) [17] with 200-dimension speaker factors is trained with the
same dataset as the iVector extractor. Previously the iVectors are
centered, whitened, and length-normalized [18]. Two training meth-
ods are tested for sPLDA, the clean, where only clean data are used,
and the multistyle, where noisy data of 20, 15, and 8 dB are also in-
cluded. The enrollment and test data is the same subset of the PRISM
dataset used in [7, 8, 12]. It includes additive noise from different
scenarios at three different SNRs of 20, 15, and 8 dB. Experiments
are reported in terms of equal error rate (EER) and minimum of de-
cision cost function (minDCF) as defined in [19], only on females.
The SNR in enrollment and test is always the same.

In our approach, mean updates of the noise parametes n and h
are obtained in the odd iterations of the EM algorithm, while the
covariance update of n is obtained in even iterations. The reason to
do it in this way is that the covariance update depends on the mean
update. We have swept over several number of iterations for noise-
adapted UBM training to find optimal performance. The results are
obtained for the first iteration, in which only means are updated, and
then every other iteration, in order to complete full updates of means
and covariance.

In tables 1 and 2, the results of four different systems are com-
pared for the clean sPLDA and the multistyle sPLDA. They are a
system without noise compensation, a system with the same iVec-
tor configuration and CMVN, an sVTS system, and an sUT system.
Some interesting conclusions can be found in the results. First, the
multistyle sPLDA gives better performance than the clean sPLDA,
as already observed in [8, 12]. Second, both the sVTS and the sUT
techniques outperform CMVN, and of course, the case without noise
robustness. For sVTS, iteration 3 seems to be optimal for both the
clean and multistyle sPLDA. The reader should note that in every
iteration the utterance-dependent log-likelihood (LLK) function of
the noise-adapted UBM is increased, but this increase in LLK does
not guarantee an increase in the recognition performance. We be-
lieve that more than 3 iterations overfit the data and the updates stop
being useful. On the other hand, for sUT more iterations seem to
be more useful. With the clean sPLDA iteration 7 seems to be opti-
mal for all SNRs. For the case with multistyle sPLDA, the addition
of noisy data in the sPLDA training makes the training to converge
faster, and the best results are obtained with 3 iterations, except for
the case of 8 dBs, for which the best results are obtained in iteration
5. The sUT gives better performance than the sVTS in the noisiest
case, with an SNR of 8dBs. Recall that UT is an alternative to better
model nonlinear distortions in the MFCC domain caused by noise,
and thus, the higher the noise level, the larger the nonlinear effect,
the worse the first order VTS approximation, and the larger the bene-
fit obtained with sUT. In terms of EER and for SNR=8 dBs, with the
clean sPLDA a 6.89% relative improvement is obtained with sUT
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EER(100%) minDCF10

SNR clean 20 dB 15 dB 8 dB clean 20 dB 15 dB 8 dB

No Robust 1.059 4.179 14.008 22.135 0.249 0.489 0.859 0.946

CMVN 0.772 2.143 3.167 7.750 0.182 0.317 0.488 0.717

sVTS it 1 0.851 1.864 3.029 7.262 0.197 0.286 0.451 0.728
sVTS it 3 0.912 1.591 2.607 6.689 0.172 0.252 0.409 0.659
sVTS it 5 0.842 1.765 2.696 6.478 0.180 0.284 0.415 0.697
sVTS it 7 0.788 1.809 2.594 6.357 0.190 0.298 0.412 0.693

sUT it 1 0.811 2.093 3.343 8.120 0.191 0.310 0.455 0.714
sUT it 3 0.712 1.956 3.189 6.805 0.154 0.323 0.466 0.699
sUT it 5 0.971 1.978 2.899 6.279 0.182 0.322 0.444 0.728
sUT it 7 0.970 1.877 2.819 5.919 0.190 0.304 0.423 0.682

Table 1. Results for the clean sPLDA

EER(100%) minDCF10

SNR clean 20 dB 15 dB 8 dB clean 20 dB 15 dB 8 dB

No Robust 0.802 1.994 10.296 11.942 0.216 0.327 0.791 0.970

CMVN 0.694 1.786 2.304 4.261 0.177 0.278 0.381 0.635

sVTS it 1 0.859 1.521 2.261 4.459 0.182 0.245 0.319 0.583
sVTS it 3 0.846 1.447 1.918 4.292 0.169 0.233 0.338 0.584
sVTS it 5 0.794 1.673 2.104 4.450 0.179 0.275 0.388 0.626
sVTS it 7 0.848 1.790 2.281 4.514 0.184 0.276 0.388 0.627

sUT it 1 0.844 1.564 2.311 4.284 0.191 0.263 0.334 0.573
sUT it 3 0.717 1.412 1.940 4.087 0.155 0.241 0.327 0.568
sUT it 5 0.879 1.675 1.975 3.670 0.148 0.250 0.306 0.556
sUT it 7 0.932 1.639 2.074 3.708 0.180 0.260 0.320 0.582

Table 2. Results for the multistyle sPLDA

over sVTS, and in the multistyle case the relative improvement is
of 14.50%, taking in both cases the optimal iterations of each tech-
nique. As final remark, note that the sVTS results are slightly dif-
ferent to the ones published in [12] because the feature extraction is
different, and because in this work the VAD of noisy files is com-
puted with the noisy speech, whereas there it was computed from
the clean signal.

4. CONCLUSIONS

In this paper, the UT is presented for a speaker recognition task as
an alternative to the first order VTS to approximate the nonlineari-
ties caused by noise in the model space. The UT samples in the clean
space, transforms the sampled features with the nonlinear function
that relates clean and noisy MFCCs, and obtains the mean and co-
variances of the noise-adapted UBM in the transformed space. Un-
like first order VTS, which is a linear approximation, the UT is ex-
pected to be more accurate when the distortions are far from being
locally linear. The results show improvements for very low SNRs.
In terms of EER, a 6.89% relative improvement is obtained for a
sPLDA trained with only clean speech, and a 14.50% for a sPLDA
trained with clean and noisy speech. To avoid the high computa-
tional load of the iVector modelling in the proposed noisy environ-
ment, a simplified version is followed, where the sufficient statistics
are normalized with their corresponding utterance-dependent noise-
adapted UBM. Finally, it is also concluded that the noise-adapted
UBM calculation converges faster in sVTS than in sUT.
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