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ABSTRACT

A vector taylor series (VTS) based i-vector extractor was recently
proposed for noise-robust speaker recognition by extracting synthe-
sized clean i-vectors to be used in the standard system back-end.
This approach brings significant improvements in accuracy for noisy
speech conditions. However, this approach incurred such a large
computational expense that using the state-of-the-art model size or
evaluating large scale evaluations was impractical. In this work, we
propose an efficient simplification scheme, named sVTS, in order
to show that the VTS approach gives improvements in large scale
applications compared to state-of-the-art systems. In contrast to
VTS, sVTS generates normalized Baum-Welch statistics and uses
the standard i-vector model, making it straightforward to employ on
the state-of-the-art i-vector speaker recognition system. Results pre-
sented on both the PRISM and the large NIST SRE’12 corpora show
that using sVTS i-vectors provides significant improvements in the
noisy conditions, and that our proposed simplification result in only
a slight degradation with respect to the original VTS approach.
Index Terms: speaker recognition, Vector Taylor Series, i-vector,
noisy speaker verification, noise compensation

1. INTRODUCTION

Recently, the state-of-the-art in speaker verification has seen signif-
icant improvements in accuracy from the successful application of
the i-vector extraction paradigm [1], along with a Bayesian back-end
(such as probabilistic linear discriminant analysis (PLDA) [2, 3, 4]).
In this framework, each speech utterance is projected into a single
low-dimensional vector – referred to as i-vector – of a few hundred
dimensions, and a PLDA model is then used to compare i-vectors
from different utterances to produce verification scores.

The approach proposed in this work tackles the challenge of ro-
bustness to noisy speech for speaker verification systems. While
current state-of-the-art systems achieve very high accuracy on clean
speech, the degradation incurred by noise is still a challenge. In [5],
we have successfully proposed a robust strategy to compensate for
such degradation by using multi-style training for the PLDA back-
end. While significant improvements were obtained, there is still an
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order of magnitude difference in accuracy between clean and noisy
speech.

In our previous work [6], we proposed to tackle the problem
at an earlier stage, where the i-vector extractor explicitly takes into
account the modeling of noise in the speech data using the VTS ap-
proximation. VTS is used to model nonlinear distortions in the mel-
cepstral domain caused by both additive and convolutive noise. In
automatic speech recognition (ASR), VTS is used to synthesize an
acoustic model of noisy speech from a given clean speech model and
from estimated noise distributions [7, 8, 9].

In contrast to ASR, we use the VTS approach in a somewhat
opposite manner since our goal is to obtain a clean version of an
i-vector. We effectively model the relation between the “clean”
i-vector and the corresponding “noisy” GMM and compute the
“clean” i-vector directly by fitting the corresponding noisy GMM
to a given noisy speech segment. Although this approach provides
significant improvements on noisy data, this new framework results
in a high computational burden and memory usage. It is therefore
impractical to use similar model size as in state-of-the-art systems,
which hinders the possibility of making comparisons on large scale
evaluations.

In this work, we propose an efficient simplification of the the
VTS framework for speaker recognition: sVTS. We first validate
this new model by a comparison with the original VTS and a base-
line system on the noisy PRISM corpus. We then show results and
benefits of our approach on the large NIST SRE 2012 evaluation us-
ing standard model sizes as found in the literature. The main benefit
of our proposed approach is that it works at the sufficient statistics
level, enabling the use of the standard equations for i-vector extrac-
tion (and i-vector model training) avoiding most of the computa-
tional burden introduced by the original approach.

2. STANDARD I-VECTOR EXTRACTION

In the standard i-vector framework, (clean) speech frames x(i) from
the i-th speech segment are assumed to be generated by the following
distribution:

x(i) ∼
∑
m

πmN(µm + Tmω
(i),Σm), (1)

where µm, Σm and πm are means, covariance matrices and weights
of the universal background model (UBM), matrix Tm spans a low-
rank subspace (referred to as the total variability subspace) by which
GMM means are adapted to a particular speech segment, and ω(i) is
a segment-specific low-dimensional vector with standard Gaussian
prior distribution. Given a speech segment, the i-vector is computed
using Equation (2) below as the maximum a posteriori (MAP) point
estimate of the vector ω(i).
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The subspace Tm can be trained using the expectation maxi-
mization (EM) algorithm [10]. In the E step, the posterior distribu-
tion of ω(i) is Gaussian with mean and covariance matrices given
by:

〈ω(i)〉 = L(i)
∑
m

T̃T
m f̃ (i)m (2)

L(i) = (I +
∑
m

γ(i)
m T̃T

mT̃m)−1 (3)

where the matrix T̃m relates to the matrix Tm from eq. (1) as
Tm = PmT̃m, and Pm is a lower triangular matrix obtained form
the Cholesky decomposition of Σm = PmPT

m, and

γ(i)
m =

∑
t

γ
(i)
mt (4)

f̃ (i)m = P−1
m

∑
t

γ
(i)
mt(x

(i)
t − µm) (5)

are the zero order and first order whitened sufficient statistics pre-
collected using UBM. The first order statistic whitening (i.e. µ(i)

m

subtraction and multiplication by P−1
m ) not only leads to more ef-

ficient implementation (i.e. simpler formulas (2)), but it will also
play an important role in the simplified VTS approach proposed in
section 4.

In the M step, the matrices T̃m are updated as:

T̃m =
∑
i

f̃ (i)m 〈ω(i)〉T
(∑

i

γ(i)
m

(
L(i) + 〈ω(i)ω(i)〉T

))−1

(6)

3. VTS-BASED I-VECTOR EXTRACTION

This section describes the original idea of applying the VTS approxi-
mation to the model for noise robust i-vector extraction as introduced
in [6]. The VTS-based i-vector extraction is a two-step process: 1)
the UBM is first adapted to the additive and convolutive noise of a
speech segment, and 2) the noise-compensated i-vector is then ex-
tracted based on the sufficient statistics collected from the adapted
UBM. We first describe the UBM noise adaptation along with the
foundation of the VTS approximation, originally proposed for noise
robust ASR in [8]. We then derive the noise robust i-vector extrac-
tion model using similar approximations.

3.1. Adaptating UBM to noise

In the mel-frequency cepstrum (MFCC) domain, the feature vector
for a noisy speech frame y can be modeled as

y = x + h + g(n− x− h), (7)

where y, x, h, n are the cepstrum vectors corresponding to the noisy
speech, clean speech, channel, and additive noise, respectively. The
nonlinear function g is

g(n− x− h) = C log(1 + exp(C†(n− x− h))), (8)

where C is the discrete cosine transform (DCT) matrix and C† is its
pseudo-inverse. Assuming Gaussian distributions for both additive
and convolutive noise, the mean vector of them-th component of the
noise-adapted UBM can be approximated using a VTS expansion at
(µxm0,µn0,µh0) as

µym
≈ µxm0 + µh0 + g(µn0 − µxm0 − µh0)

+Gm(µxm
− µxm0) + Gm(µh − µh0)

+Fm(µn − µn0), (9)

whereµxm
is the mean of the corresponding component in the clean

UBM, and µn and µh are the means of the additive and convolutive
noise distributions, respectively. The matrices Gm and Fm are de-
fined as:

Gm = C · diag
(

1

1 + exp(C†(µn0 − µxm0 − µh0))

)
·C†

Fm = I−Gm. (10)

To synthesize the noisy UBM, the VTS expansion is done at the point
(µxm0 = µxm

,µn0 = µn,µh0 = µh), which reduces (9) to

µym0 ≈ µxm0 + µh0 + g(µn0 − µxm0 − µh0). (11)

The noise-adapted covariance matrix can be approximated as

Σym ≈ GmΣxmGT
m + FmΣnFT

m, (12)

where Σxm is the covariance matrix of the m-th Gaussian compo-
nent from the clean UBM, Σn is the additive noise covariance ma-
trix and Σh is set to zero since the channel is usually considered to
be fixed. A similar adaptation can be derived for the first-order and
second-order derivatives of the MFCC features [6]. The noise dis-
tribution parameters µn, µh and Σn can be estimated directly from
the noisy speech segments [8, 6].

3.2. Noise-compensated i-vector extraction

By incorporating the VTS approximation (9) and (12) into the i-
vector extraction model (1), the model for the noisy features y(i)

is given by (see [6])

y(i) ∼
∑
m

πmN(µ
(i)
ym0 + G(i)

m Tmω
(i),Σ(i)

ym). (13)

According to [6], the resulting i-vector ω(i) and EM algorithm for
training the subspace Tm can be derived as follows: In the E step,
the posterior distribution of ω(i) in (13) is Gaussian with mean and
covariance matrices given by:

〈ω(i)〉 = L(i)
∑
m

TT
m(Σ̂

(i)

ym)−1f (i)ym , (14)

L(i) = (I +
∑
m

γ(i)
m TT

m(Σ̂
(i)

ym)−1Tm)−1, (15)

where statistics f
(i)
ym and (Σ̂

(i)

ym)−1 are pre-collected from a noisy
speech segment using the noise-adapted UBM as

f (i)ym =
∑
t

γ
(i)
mt(G

(i)
m )−1(y

(i)
t − µ

(i)
ym

)

(Σ̂
(i)

ym)−1 = (G(i)
m )T (Σ(i)

ym)−1G(i)
m . (16)

In the M step, the matrix Tm can be updated as

vec(Tm) =

(∑
i

γ(i)
ym

(
L(i) + 〈ω(i)ω(i)〉T

)
⊗ (Σ̂

(i)

ym)−1

)−1

× vec
∑
i

(Σ̂
(i)

ym)−1f (i)ym〈ω
(i)〉T (17)

where ⊗ is the Kronecker product and vec is an operator which cre-
ates a column vector from a matrix by stacking its columns.
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4. SIMPLIFICATION OF VTS-BASED I-VECTOR
EXTRACTION

An efficient implementation of standard i-vector extraction can ben-
efit from pre-computing the quadratic terms T̃T

mT̃m, which slows
down the i-vector extraction by an order of magnitude when they are
evaluated on-the-fly. The E step for T̃m training can benefit from
the whitening of the sufficient statistics as shown in equation (5).
Neither of these two optimization is possible in the case of the VTS-
based i-vector extraction because of the segment dependent term
Σ

(i)
ym . More importantly, in the M step, the Kronecker product and

the large matrix inverse in equation (17) is several orders of mag-
nitude more computationally and memory demanding than the cal-
culations in the equation (6). For these reasons, it is impractical to
use the noise-compensated i-vector extraction approach for models
of large size or to run large scale evaluations.

In this work, we propose an efficient approximation, referred
to as simplified VTS (sVTS), for noise-compensated i-vector ex-
traction, which eliminates most of the computational burden. First,
for each speech segment (training, enrollment or test), we adapt the
UBM to the noise in the segment in the same way as described in
section 3.1. Next, the sufficient statistics are collected using the
equations for standard i-vector extraction (4) and (5), except that the
segment-dependent means, µ(i)

ym
, from the synthesized noisy UBM

are used in place of the original means µm, and similarly, the matri-
ces Pm are replaced by segment-dependent lower triangular matri-
ces P

(i)
m , which are obtained from the Cholesky decompositions of

the noisy covariance matrices Σ
(i)
ym . The occupation counts γ(i)

mt in
equations (4) and (5) are also collected using the synthesized noisy
UBM. These statistics are then used for i-vector extraction and train-
ing using the standard formula (2), (3) and (6). As a result, the only
difference from the standard i-vector extraction scheme is that the
sufficient statistics are collected and whitened using the VTS syn-
thesized noisy UBM. Such whitening can be seen as a transforma-
tion of the noisy sufficient statistics to a “clean canonical” domain.
Therefore, sVTS can be seen as a noise compensation technique op-
erating in the domain of sufficient statistics, while our former VTS
approach is a model-domain compensation technique. The follow-
ing experiments show that the sVTS approach can preserve most of
the improvements obtained with the original VTS-based i-vector ex-
traction model.

5. EXPERIMENTS AND RESULTS

We first compare the new sVTS approach to the original VTS using a
small model1 on the PRISM noise set [11]. Once sVTS is validated,
we show results and benefits of sVTS on the standard NIST SRE’12
noisy conditions, where the test segments include additive noise, and
trials are channel-mismatched.

5.1. Evaluation on PRISM set using small models

The frontend for all systems is comprised of 20 MFCC coeffi-
cients (including C0), augmented with first-order and second-order
derivatives. In addition, the baseline system (i.e. standard i-vector
framework) applies mean and variance normalization (MVN) to the
MFCC features as MVN has been widely used to compensate for
additive and convolutive noise in speaker recognition.

1A small model is used for this comparison since it is computationally
impractical to apply the standard VTS on large models.

A 512-component diagonal covariance UBM is trained in a
gender-dependent fashion on NIST telephone data from the 2004
and 2005 speaker recognition evaluations (SRE). An i-vector extrac-
tor of dimension 400 is then trained on a set taken from NIST SRE
’04, ’05, ’06, and Switchboard II parts 2 and 3. The dimensionality
of i-vectors is further reduced to 200 by LDA, followed by length
normalization and PLDA, trained on the same data set.

Results are shown on a part of the PRISM set described in [5,
11], where noisy speech samples are added to the training, enroll-
ment, and test sets at different signal-to-noise ratios (SNR) of 20dB,
15dB, and 8dB. Different noisy samples are used for the training,
enrollment and test sets. We report performance in terms of the
detection cost function (DCF) and equal error rate (EER) at each
SNR level. The DCF effective prior used is the one from the NIST
SRE’10 [12] evaluation, denoted as DCF10.

Table 1. DCF10 and EER performance of the baseline and VTS
systems compared to the proposed sVTS approach where both clean
and multistyle PLDA back-ends were used. The sVTS system signif-
icantly outperforms the baseline system but slightly underperforms
the VTS system in low SNR conditions.

a. Clean PLDA back-end (DCF10 / EER(%))
Eval. cond. MVN VTS sVTS

SNR=8dB 0.98 / 15.53 0.64 / 5.25 0.77 / 5.25
SNR=15dB 0.66 / 4.09 0.27 / 1.76 0.33 / 1.85
SNR=20dB 0.35 / 1.94 0.18 / 1.23 0.22 / 1.52
Clean 0.08 / 0.53 0.15 / 0.82 0.11 / 0.82

b. Multistyle PLDA back-end (DCF10 / EER(%))
Eval. cond. MVN VTS sVTS
SNR=8dB 0.81 / 5.98 0.48 / 3.29 0.55 / 3.32
SNR=15dB 0.44 / 2.16 0.23 / 1.35 0.30 / 1.44
SNR=20dB 0.26 / 1.33 0.17 / 1.03 0.19 / 1.21
Clean 0.09 / 0.40 0.15 / 0.64 0.11 / 0.62

Table 1 presents the performance of the baseline (MVN), VTS,
and sVTS systems at different SNRs. Two PLDA back-ends are eval-
uated: Clean, where the PLDA model is trained exclusively on clean
data, and Multistyle, where the PLDA model is trained on clean and
noisy data as proposed in [5]. From the results, we observe large
improvements offered by VTS over MVN in noisy conditions using
a relatively small model size, even when using multi-style PLDA.
These improvements over the baseline system are largely maintained
using our sVTS approach, especially in low SNR conditions. Al-
though a slight degradation is observed when using sVTS over VTS,
the benefit of having no additional computation required after the
UBM adaptation makes the approach scalable to larger model size.
Though not shown in the table, similar improvements can be ob-
served when SNR levels are mismatched for enrollment and test.

5.2. Evaluation on NIST SRE12 noisy conditions

In contrast to previous years, three new noisy conditions were intro-
duced in NIST SRE12 [13]: interview speech with added noise (C3),
telephone speech with added noise (C4), and telephone speech col-
lected under noisy conditions (C5). For this work, we only present
results on C3 and C4 (C5 was discarded as the effect of additive
noise is marginal).

Compared to the PRISM noisy set, these conditions present sev-
eral differences. First, the enrollment data for all speakers can be
used for system training. Second, all enrollment sessions are in
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clean conditions, and finally, a speaker model is derived from mul-
tiple enrollment sessions with both telephone and microphone chan-
nels. These differences make it cumbersome to use a VTS approach
for noise compensation directly since we showed that they affect the
performance in clean conditions. To mitigate this effect, we propose
to combine the original statistics as well as the VTS compensated
statistics during PLDA training and system evaluation.

To ease the experimental burden, results are shown on the fe-
male trials only. A 2048-component, gender-dependent, GMM with
diagonal covariances is used along with 600 dimensional i-vectors
further reduced to 200 by LDA followed by length normalization
and PLDA. The development set and model training of the system
is described in [14] and only clean enrollment data is used to model
speakers in the evaluation. As before, the baseline system uses MVN
but employs the exact same model configuration described above.

A single i-vector extractor, named Comb, is trained using both
original and VTS-compensated statistics for the NIST SRE12 noisy
conditions without MVN. During evaluation, we use only the orig-
inal statistics to extract the i-vectors for the clean enrollment files,
while the i-vectors from noisy test samples are extracted from the
VTS-compensated statistics. For comparison, the performance from
another system called Raw is shown, which has the same setup as
the baseline MVN system but omits the MVN process.

5.2.1. Evaluation with clean PLDA back-ends

We first evaluate the three systems with a clean backend trained
without any noisy data. The Comb system used both the original
and the compensated i-vectors for every segment of clean data to
train the back-end. This reduces the mismatch between the original
i-vectors corresponding to the clean enrollment samples and com-
pensated i-vectors corresponding to the noisy test samples. The ap-
proach also alleviates the mismatch between uncompensated enroll-
ment and compensated test i-vectors.

Table 2. minDCF (Ptar=0.001 / Ptar=0.01) performance on NIST
SRE12 conditions for the MVN baseline and Raw systems compared
to the proposed Comb approach where sVTS compensated i-vectors
are used in the clean PLDA back-end. The Comb system consistently
outperforms the other two systems.

Condition MVN Raw Comb
C3 .259 / .138 .304 / .173 .237 / .129
C4 .475 / .293 .531 / .323 .468 / .280

Table 2 presents the minDCF, with Ptar = 0.001 and Ptar =
0.01 as defined in [13], of the MVN baseline, Raw, and Comb sys-
tems with two different clean PLDA back-ends for the NIST SRE12
extended C3 and C4 noisy tasks. The Raw and Comb systems mainly
differ in the statistics computation of the noisy segments (statistics
for the clean samples are identical). Hence, the significant improve-
ment observed from the Comb system compared to the Raw system
is due to the proposed sVTS compensation applied on the noisy seg-
ments. The combination of original and compensated statistics used
in the Comb system smooths the mismatch between i-vectors ob-
tained for the clean and the noisy segments, which results in a sys-
tem that outperforms the MVN baseline. If the backend is trained
only on the original i-vectors, the performance of the Comb system
degrades significantly. The improvements achieved with the clean
back-end confirm the benefit of the sVTS compensation approach.

5.2.2. Evaluation with multi-style PLDA back-ends

For the multi-style PLDA back-end, sVTS-compensated i-vectors
are extracted for the noisy data. In this case. it is not necessary to du-
plicate the clean data by computing both original and compensated
i-vectors. To clarify the difference between clean and multi-style
back-ends in the Comb system, table 3 presents the i-vector selec-
tion strategy for the Comb system. As was the case for the clean

Table 3. i-vector selection strategy for different training regimes of
the PLDA back-end in the Comb system.

PLDA back-end data type original compensated

Clean clean × ×

clean ×
Multistyle

noisy ×

backend, Table 4 shows that the proposed Comb system outperforms
both the MVN and Raw systems. The improvements from the Comb
system show the complementarity of the sVTS compensation in the
frontend and the multi-style training in the back-end.

Table 4. The min DCF (Ptar=0.001 / Ptar=0.01) performance on
NIST SRE12 data for MVN baseline and Raw systems compared to
the proposed Comb approach where sVTS compensated i-vectors are
used in the clean PLDA backends. The Comb system outperforms the
other two systems consistently.

Condition MVN Raw Comb
C3 .202 / .100 .233 / .125 .178 / .090
C4 .405 / .226 .453 / .257 .388 / .230

6. CONCLUSIONS

In this work, we aim at showing the benefit of the new VTS ap-
proach for speaker recognition by running evaluations on large data
sets and using a model size typically found in the state-of-the-art.
Given the computational burden of our original VTS solution, we
propose an efficient approximation, sVTS, which collects sufficient
statistics and whitens them using the VTS-synthesized UBM. As
demonstrated by results on the PRISM corpus, this new approach
preserves most of the improvements obtained from the original VTS
approach but similar computation burden as the standard i-vector
model. Moreover, sVTS can easily be evaluated on large data sets,
such as the noisy conditions of NIST SRE 2012. In this scenario,
we still find that our VTS approach outperforms the state-of-the-art
on both extended conditions C3 and C4 which contain noisy speech.
For a successful application of the sVTS approach on this corpora,
we proposed the design of a system that combines both VTS and the
standard approach to counteract the degradation incurred by VTS on
clean data. Future research will include the study of VTS system
performance under other types of noise and degradations like convo-
lutive noise, reverberant speech, and so on.
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