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ABSTRACT

In this paper we propose a technique of Within-Class Covari-

ance Correction (WCC) for Linear Discriminant Analysis (LDA) in

Speaker Recognition to perform an unsupervised adaptation of LDA

to an unseen data domain, and/or to compensate for speaker popu-

lation difference among different portions of LDA training dataset.

The paper follows on the study of source-normalization and inter-

database variability compensation techniques which deal with multi-

modal distribution of i-vectors. On the DARPA RATS (Robust Au-

tomatic Transcription of Speech) task, we show that, with two hours

of unsupervised data, we improve the Equal-Error Rate (EER) by

17.5%, and 36% relative on the unmatched and semi-matched con-

ditions, respectively. On the Domain Adaptation Challenge we show

up to 70% relative EER reduction and we propose a data clustering

procedure to identify the directions of the domain-based variability

in the adaptation data.

Index Terms— speaker recognition, i-vectors, source normal-

ization, LDA, inter-dataset variability compensation

1. INTRODUCTION

I-vector based systems have recently become the state-of-the-art

framework in Speaker Recognition. They provide an elegant way

of reducing the large-dimensional variable-length input data to a

small-fixed-dimensional feature vector while retaining most of the

relevant information. The technique was originally inspired by Joint

Factor Analysis framework introduced in [1, 2].

The objective in speaker verification calls for robust extraction

of the relevant speaker information. However, an i-vector contains

not only the speaker information—resulting in wanted variability in

the i-vector space—but also all kinds of unwanted information—

resulting in what is commonly referred to as channel.

There are various techniques to deal with these two types of vari-

ability which all aim at suppressing as much of the channel variabil-

ity and emphasizing as much of the speaker variability as possible,
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Fig. 1. Multi-modal distribution of i-vectors taken from multiple

Switchboard databases, projected into first two bases of PCA esti-

mated using the between-dataset covariance. The top two clusters

belong to the SWB-Cellular collection, while the bottom two belong

to SWB-Phase 2 collection. From left to right, we see two male, and

two female clusters, respectively.

such as Nuisance Attribute Projection (NAP [3]) or Linear Discrim-

inant Analysis (LDA). Note that Probabilistic Linear Discriminant

Analysis (PLDA [4])—as used in this work—also deals with this is-

sue, but it is applied at the scoring level and it is not studied in this

paper.

In various studies, it was observed that, a distribution of a collec-

tion of i-vectors can be multi-modal and it was shown that the modes

correspond to different data sub-collections [5, 6, 7]. Such data mis-

match is also often typical between the training and the test-set. For

sake of clarity, we will refer to the sources as datasets in this work

and use capital letter D for reference. Figure 1 shows an analysis of

one of our training sets of i-vectors. Such multi-modality can lead

to misinterpretation of the channel and speaker information. In the

studies referenced above, it was shown how to compensate for this

phenomena by the use of within- and between-speaker covariance

matrices. In this work we present a similar technique of Within-

Speaker Covariance Correction (WCC) and we show how it can be

extended in unsupervised adaptation of the LDA matrix to compen-

sate for the mismatch of the training and the test datasets.

2. THEORETICAL BACKGROUND

Let us first take a look at the anatomy of our recognition system. It

is based on a comparison of a pair of pre-processed i-vectors. The
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comparison is facilitated via Probabilistic Linear Discriminant Anal-

ysis (PLDA) model [8, 4]. Given a pair of i-vectors, PLDA allows to

compute the log-likelihood for the same-speaker hypothesis and for

the different-speaker hypothesis.

The pre-processing consists of applying LDA to reduce the di-

mensionality and will be discussed further in this work. Such pro-

cessed i-vectors are then followed by global mean and variance nor-

malization, followed by length-normalization [9, 10].

Let us recall that LDA is based on computing the between-

class and withing-class covariance matrices ΣB and ΣW, whose

Maximum-Likelihood (ML), or un-equalized estimation is given as

ΣB =
1

N

C
X

c=1

Nc(µc − µ)(µc − µ)′ (1)

ΣW =
1

N

C
X

c=1

Nc
X

n=1

(φn,c − µc)(φn,c − µc)
′

(2)

where φn,c is the n-th i-vector in class c, C is number of classes,

Nc is number of data-points in class c, µc is the mean of the data

belonging to class c:

µc =
1

Nc

Nc
X

n=1

φn,c, (3)

where φn,c is n-th data-point in class c, and µ is the global mean
of the data, computed as

µ =
1

N

N
X

n=1

φn. (4)

LDA emphasizes discrimination of data belonging to different

classes and it does so by solving the generalized eigen-value prob-

lem:

ΣBvm = λmΣWvm, (5)

withV = [v1, . . . ,vM̂ ] for M̂ largest eigen-values λm, and apply-

ingV as

φLDA = V
′
φ. (6)

Class separability for each basis is often expressed by the Fisher ratio

and is equal to the basis’ corresponding eigen-value.

2.1. Within-Class Covariance Correction

Let us decompose the within-speaker variability as

ΣWS = ΣBD + ΣIS, (7)

where ΣBD is the between-dataset covariance, and ΣIS is the inter-

session covariance, describing an average speaker variability within

a dataset and assumed to be shared across datasets. It can be ex-

pressed as a within-class covariance where the classes are pairs of

speaker and datasets (d, s):

ΣIS =
1

N

D
X

d=1

Sd
X

s=1

Nd,s
X

n=1

Nd,s(φn,d,s − µd,s)(φn,d,s − µd,s)
′
, (8)

whereD is number of datasets, s is a speaker instance for dataset d.

Other variables have obvious meanings. We can decompose the total

variabilityΣT as

ΣT = ΣBS + ΣWS (9)

= ΣBS + ΣBD + ΣIS. (10)

Fig. 2 depicts this situation.

It is important to note that, if the speakers do not overlap across

datasets, the “speaker” class will effectively (without any change in

Σ
BS

Σ
IS

Σ
BD

Σ
WS

= Σ
IS

+ Σ
BD

Σ
WD

= Σ
IS

+ Σ
BS

Fig. 2. Illustration of decomposition of within-speaker covariance

ΣWS into inter-session covariance ΣIS, and between-dataset covari-

ance ΣBD. The within-dataset covariance is decomposed into inter-

session covariance and between-speaker covariance. Note that dif-

ferent colors represent different speakers and different shapes repre-

sent different datasets.

meaning) be understood as “speaker and dataset” class. As a result,

ΣWS will have the same form asΣIS in (8). TheΣBD term from (10)

will diminish and will be absorbed byΣBS, incorrectly emphasizing

discriminability power in LDA computation.

Note that, multi-modality over datasets does not necessarily

have to be a problem if the speakers in the datasets overlap. In

this case, the between-dataset variability is correctly included in the

within-speaker (channel) covariance and (7) is satisfied.

Source Normalization (SN) [5, 6] solves this issue by computing

separate between-speaker covariance matrices for each dataset and

averaging these over all datasets: ΣBS =
P

d∈D
ΣBS,d,whereD is a

set of all datasets. This way, the data from different sources are effec-

tively centered around a global mean and the between-dataset vari-

ability is compensated for in the between-speaker covariance com-

putation.

Inter-dataset Variability Compensation (IDVC [7]) relies on

a complete removal of known between-dataset variability by the

means of NAP [3]. Note that, this requires an additional step in

i-vector pre-processing.

In our work we use a very similar approach, i.e. we use the

between-dataset covariance matrix ΣBD (as in IDVC) to update

our within-speaker variability (unlike updating the BS covariance

in SN). To distinguish among the methods, we will refer to our

approach as to Within-Class Correction (WCC). Note that the rank

of ΣBD matrix would typically be low, since the computation of

the covariance is over means of data associated with the labeled

datasets. Our assumption is that the directions of dataset shift are

exclusive, meaning not carrying any useful speaker information and

we can give them very high (negative) importance by scaling the

ΣBD up, so that the Fisher ratio in LDA for these directions will be

very small. As a consequence, these directions will not be included

the final LDA projection. This leads to an update formula

Σ
(new)
WS = ΣWS + αΣ

(WCC)
BD , (11)

where Σ
(WCC)
BD is the correction matrix estimated as a between-class

covariance matrix with datasets as classes. In this case, however,

instead of using the ML estimate (1), we equalize the number of

data in each dataset, therefore

Σ
(WCC)
BD =

1

C

C
X

c=1

(µc − µ̂)(µc − µ̂)′ (12)

where µ̂ is the equalized (not weighted) average of dataset means:

µ̂ =
1

C

C
X

c=1

µc. (13)
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In our experiments we have seen that, the performance is very insen-

sitive to the α constant once it is set to a large-enough number. Our

typical approach was to set it to 10. Also note that, for the case when

speakers do not overlap among datasets, ΣBD is still absorbed by

ΣBS, but by artificially adding it toΣWS with a large-enough weight,

we make it disappear from the LDA projection. On the other hand, if

the speakers do overlap across the datasets, the variability specified

by ΣBD is implicitly part of ΣWS and, as we will see, adding it to

ΣWS (“again”) does not hurt the performance.

2.2. Adaptation to New Dataset

The problem of dataset mismatch becomes even more serious when

using an already built system on an unknown test data. As we will

show in our experimental section, the degradation of recognition per-

formance due to the dataset mismatch can be very significant.

Our main task was to develop an unsupervised technique, which

would adapt the LDA matrix in order to compensate for the new

dataset shift. The most straightforward way to do this is to re-

estimate LDA using adapted within- or between- speaker covariance

matrices ΣWS, ΣBS in (5). Adapting the between-speaker covari-

ance would require either speaker labels (which are not provided in

unsupervised adaptation), or perform a speaker clustering—which is

studied in [11, 12, 13]. Instead, we assume that our current estimate

of the within-dataset (and thus between-speaker and inter-session)

covariance is good enough and we will update the within-speaker

covariance using a new estimate of the between-dataset covariance

in the same way as was described in the previous section, i.e. using

linear combination as in (11). The adaptation can be understood as

within-class correction using new dataset directions.

Let us recall that the correction between-class covariance matrix

is computed using (12). Identifying a new class, i.e. new dataset,

transmission channel, domain, etc., we can compute the mean over

its data-points and add it to collection of means in (12). Assuming

that the adaptation data is a signle dataset, we can compute its mean

and use it for WCC. We will show an improvement on the RATS

task. Note that such operation requires re-estimation of the global

mean µ̂, however, we have found that re-estimation of µ̂ had negli-

gible impact on the result.

2.2.1. Dataset Clustering

Let us note, however, that the adaptation data can also suffer of

multimodality. Assuming that the within-dataset covariance ma-

trix is known and well-estimated, we can use a GMM with shared

covariance—set to our within-dataset covariance—to cluster the

adaptation data space. The means of the individual Gaussian com-

ponents would be those added to the collection of means in (12).

The clustering itself is not the main topic of this work, and we have

used it rather empirically as natural choice, but, as we will see, it

shows an interesting direction in future research.

3. EXPERIMENTS

We have carried out our experiments in two different scenarios.

Originally, the task was to develop a system which would be easily

adaptable to different transmission channels in the RATS problem,

i.e. recognizing heavily distorted data, having limited amount of

new-channel adaptation data. After seeing improvements in the

RATS domain, we carried a set of experiments in the concurrently

going research known as “Domain Adaptation Challenge” (DAC)

[14, 11, 12, 13]. While in RATS the task was to adapt a system to

an unseen transmission channel, in DAC the task was to adapt the

system to an unknown domain simulated by having the Switchboard

data collection in training and various MIXER databases in testing

and adaptation sets.

From a dataset point of view, the main difference between these

tasks is that in RATS we have multiple utterances per speaker across

various channels, while in DAC, speakers do not overlap among the

train datasets. As for the adaptation set, in RATS we have close to

one utterance per speaker, while in DAC, there are multiple utter-

ances per speaker.

3.1. RATS

The Linguistic Data Consortium (LDC) provided the training and

test data for the RATS participants. The audio recordings were se-

lected from existing and new data sources as follows: NIST SRE

2004 (Eng., Ara., Chin., Rus., Span.); RATS-LDC (Lev. Arabic,

Farsi); RATS-Appen (Lev. Ara., Farsi, Pash., Dari, Urdu); Call-

Friend Farsi; Fisher (Lev. Ara. and Eng.); NIST LRE (various lan-

guages).

All recordings were retransmitted through 8 different noisy com-

munication channels, labeled by the letters A through H [15]. A

“push-to-talk” (PTT) transmission protocol was used in all chan-

nels except G. PTT states produce some regions where multiple non-

transmission (NT) segments may occur. As a result, the amount of

usable audio decreases after retransmission.

It should be noted that among the data sources listed above, only

the first three were annotated with speaker labels. Data from the

other sources was used to train universal background models and

i-vector extractors. We used the “dev” subset of the RATS-LDC

and RATS-Appen corpora 1 to define speaker enrollment and testing

samples. The rest of the RATS-LDC and RATS-Appen data, along

with the NIST SRE 2004 set, was used for speaker modeling.

We have held out channel B data to serve as unknown-channel

adaptation data (analogy to in-domain in the context of DAC). Chan-

nels C through H served as training data for all our hyper-parameter

estimation. Let us note that speakers heavily overlap across the chan-

nels. We have excluded channel A data completely due to similarity

of the A and B channels. We made sure the speakers do not overlap

between the training and the adaptation sets. The adaptation set con-

tains 2 hours of speech, 1164 utterances, and 1000 speakers (which

is close to one utterance per speaker).

Trial-wise, the test protocol is defined as 6-conversational enroll-

ment, and 1-conversation test. We have defined two test conditions

based on the presence (semi-matched) or absence (unmatched) of

unknown-channel utterance in enrollment—i.e. whether one of the

6 utterances comes from channel B. The test utterances come from

the unknown channel.

We report our results at three operating points, as defined by

the RATS, to target the extreme areas of the DET curves—false

alarm probability at miss probability of 10%, miss probability at

false alarm of 2.5%, and equal-error rate. The results are based on

pools of male and female scores, however, only same-gender tests

were performed.

3.1.1. System Description

We band-limit the audio to the 125-3750Hz range and extract 14

perceptual linear predictive (PLP) coefficients plus normalized en-

ergy using a 25ms Hamming window with a 10ms frame shift. We

augment the PLPs with their first and second derivatives, yielding

45-dimensional feature vectors, which are then subjected to feature

warping using a 3s sliding window over the detected speech regions.

The voice activity detection (VAD) is a variant of the GMM-

based VAD described in [16]. RASTA-based [17] normalization was

applied to PLPs. The 15-dimensional feature vector at each frame

was augmented with the corresponding features from the preced-

ing 15 and following 15 context frames, and then projected down

1LDC catalog ids: LDC2012E49, LDC2012E63, LDC2012E69.
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Table 1. Results of WCC for RATS. The asterisk records correspond

to the trials containing the unknown channel in the enrollment.

fa@miss10 miss@fa2p5 EER

baseline 20.46 47.69 14.87

baseline* 15.70 40.90 12.66

WCC 20.70 47.81 14.85

WCC* 15.64 40.64 12.62

WCC adapt 15.61 34.10 12.24

WCC adapt* 6.82 21.40 8.07

known data 3.66 13.31 6.26

known data* 4.51 17.17 6.58

to 45 dimensions using heteroscedastic linear discriminant analysis

(HLDA). Two 2048-component GMMs (speech/non-speech) were

trained in the resulting feature space so as to maximize the mutual

information between the training observations and their respective

speech/non-speech labels.

We gender-independent UBM-GMM with 2048 components

and we used 400-dimensional i-vector extractor, further reduced

to 200 dimensions using LDA. Trial scoring was performed by

the means of PLDA trained for full-rank speaker- and channel-

covariance matrices. For a detailed description, see [18].

3.1.2. Results

Tab. 1 shows the overall results. The asterisk (*) marks the semi-

matched condition. The first line shows the results of the system

with no WCC applied. The second set shows the case, when WCC

was computed using the training data only—we see no improve-

ments as the speakers among the datasets overlap. The third set

shows the case when a single mean—computed on the adaptation

data—is added to the collection of means for BD covariance com-

putation. Note, that this is a mere rank-1 update of the LDA within-

class covariance matrix and a similar result was obtained, when only

α(µadapt − µ̂)(µadapt − µ̂)′ was added to the original unadapted
within-class covariance matrix. For reference, we provide the re-

sults on how the system performs on data that match the training set

(channels C-H, “known data”). Dataset clustering degraded perfor-

mance, therefore it is not included in the results.

3.2. “Domain Adaptation Challenge”

DAC protocol is based on the Linguistic Data Consorotium’s (LDC)

telephone corpora: the MIXER and the Switchboard data sets. The

test set is based on the NIST SRE 2010 telephone data, condition

5 (normal vocal effort). The training portion of the corpus is di-

vided into two subsets: a) the in-domain (referred to as SRE) part

is a collection of all telephone conversations from all speakers from

NIST’s SRE 2004 through 2008 task (which is believed to match the

SRE 2010 data) and is used for system-parameter adaptation, and b)

the out-of-domain (referred to as SWB) part based on the Switch-

board collections (Phase 1, Phase 2, Cellular) is used for the base

hyper-parameter training. There were 1461 male, and 1653 female

speakers in 32921 SWB files (in average 10.6 files per speaker), and

1531 male and 2276 female speakers in 36498 SRE files (in average

9.6 files per speaker).

3.2.1. System Description

We used cepstral features, extracted using a 25 ms Hamming win-

dow. 19 Mel frequency cepstral coefficients together with log energy

were calculated every 10 ms. This 20-dimensional feature vector

Table 2. Results on Domain Adaptation Challenge. ∗ indicates WCC

was perfomed on the train data (no adaptation).

DCFnew DCFold EER

baseline 0.7412 0.3836 9.94

WCC∗ 0.6408 0.2368 5.04

WCC 1G 0.7233 0.3329 7.93

WCC 2G 0.7181 0.3315 8.07

WCC 4G 0.5474 0.1682 3.57

WCC 8G 0.4811 0.1424 2.91

WCC 16G 0.4701 0.1386 2.91

WCC 32G 0.4589 0.1405 3.03

WCC oracle 0.3563 0.1181 2.41

was subjected to short time Gaussianization [19] using a 3 s sliding

window. Delta and double delta coefficients were then calculated

using a five-frame window giving a 60-dimensional feature vector.

Speech/silence segmentation is performed by the BUT Czech

phoneme recognizer [20], where all phoneme classes are linked to

the speech class. The recognizer was trained on the Czech CTS

data, but we have added noise with varying SNR to the 30% of the

database.

We used gender-independent, 2048G UBM with diagonal co-

variance matrices trained by subsequential Gaussian splitting. I-

vector extractor’s dimensionality was set to 600, with LDA reduc-

ing the dimensionality to 200. PLDA used full-rank speaker- and

channel-covariance matrices.

3.2.2. Results

We report our min-DCFs, and EER results on the female portion

of the test set, although the male condition follows similar trends.

Tab. 2 shows the result when applying the techniques in this paper.

Our baseline does not include any WCC. Correcting the within-class

covariance using the training data labels with α = 10, we already
see a big improvement (WCC∗), which correlates with the fact that

the speakers among the datasets do not overlap. The classes for the

BD covariance computation were set to each of the switchboard col-

lection and gender, similarly as in [7], i.e. {m,f}×{sw1, sw2p1,
sw2p2, sw2p3, swcell1, swcell2}, resulting in 12 classes. Adapting
the system using the same approach as in the RATS case degraded

the result (WCC 1G) w.r.t. the WCC. However knowing that the

test data comes from different datasets (SRE04-08), we performed

GMM clustering improving the result. We see that the two-Gaussian

system still degrades the performance. Our hypothesis is that the

Gaussian components got seriously misaligned in a saddle between

two major data clusters defining wrong dataset directions. Finer

clustering brought significant improvement to our system. Note that

in the RATS experiments, such clustering only degraded the perfor-

mance. “WCC oracle” shows the result when computing the update

covariance as a within-speaker covariance using true speaker labels.

4. CONCLUSIONS

In this paper, we have shown a technique of within-class correction

for Linear Discriminant Analysis estimation. We have shown that

when correct dataset clustering is used, adapting the within-class

covariance of LDA by low-rank between-dataset covariance matrix

can lead to significant improvement of the system, namely up to

70% in the Domain Adaptation Task, and 17.5% and 36% relative

in the RATS unmatched and semi-matched tasks, respectively. The

dataset clustering problem gave us an interesting direction for future

research.
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