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ABSTRACT

This article proposes a new approach for contextualizing features for
speaker recognition through the discrete cosine transform (DCT).
Specifically, we apply a 2D-DCT transform on the Mel filterbank
outputs to replace the common Mel frequency cepstral coefficients
(MFCCs) appended by deltas and double deltas. A thorough com-
parison of algorithms for delta computation and DCT-based contex-
tualization for speaker recognition is provided and the effect of vary-
ing the size of analysis window in each case is considered. Selection
of 2D-DCT coefficients using a zig-zag approach permits definition
of an arbitrary feature dimension using the most energized coeffi-
cients. We show that 60 coefficients computed using our approach
outperforms the standard MFCCs appended with double deltas by
up to 25% relative on the NIST 2012 speaker recognition evaluation
(SRE) corpus in both Cprimary and equal error rate (EER) while
additional coefficients increase system robustness to noise.

Index Terms— Contextualization, Deltas, 2D-DCT, Filterbank
Energies, Speaker Recognition

1. INTRODUCTION

Cepstral-based speech features are typically based on short-time
analysis of speech. Consequently, they do not contain sufficient
information pertinent to the manner in which the speaker uttered
the phone or word to which the extracted feature belongs. For this
reason, these features are typically appended with deltas and dou-
ble deltas (denoted as 44) to provide context and improve perfor-
mance in the fields of speech processing [1, 2]. In automatic speech
recognition (ASR) and language identification (LID), contextualiza-
tion through the discrete cosine transform (DCT) has proven suc-
cessful [3, 4, 5, 2, 6].

The DCT breaks down an input signal into a collection of co-
sine functions with corresponding coefficients (or weights) that can
be used to maximally reconstruct the signal. Deltas, on the other
hand, make no attempt to retain information for reconstruction, and
instead observe the change in values over an analysis window. Con-
sequently, a large amount of content that is available in the analysis
window is compressed through deltas; DCTs attempt to retain this
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information. The additional detail available from feature contextu-
alization through DCTs therefore warrants thorough investigation in
the context of speaker identification (SID).

In this paper, we investigate the contextualization of short-term
speech features using the two-dimensional DCT (2D-DCT) in the
context of speaker identification. We show that the selection of DCT
coefficients as used in speech and language recognition performs
poorly compared to several common algorithms for delta calculation.
We propose a modified zig-zag selection technique, borrowed from
the field of image recognition [7], in which coefficients are selected
from a rectangular DCT matrix to a spectrotemporal profile from
the speech. Through a series of experiments using a subset of the
PRISM dataset [8], we illustrate the effect of analysis window and
feature dimension of both MFCC+44 and 2D-DCT coefficients in
the context of both clean and noisy speech. Using the zig-zag se-
lection regime, we present experiments illustrating that additional
DCT coefficients in place of raw MFCCs provides improved SID
performance. The tuned features are then evaluated on the recent
NIST SRE’12 corpus using a state-of-the-art i-vector configuration
to highlight the benefits of the proposed feature.

2. CONTEXTUALIZATION OF FILTERBANK ENERGIES

This section describes methods of contextualizing MFCCs by ap-
pending deltas or Mel filterbank outputs using 2D-DCT coefficients.
In each case, we start with Mel filterbank energies extracted ev-
ery 10ms from 25ms of audio using 24 Mel filters spanning a 200-
3300 Hz bandwidth. While the energies are used directly for 2D-
DCT contextualization, delta-based approaches take MFCCs as in-
put which are computed as the DCT of the log filterbank energies and
retaining the first C coefficients, including c0 (typically C = 20).

2.1. Delta Contextualization

MFCCs are the most common feature used for SID [1]. For the last
decade, deltas and double deltas (44) have been appended to these
features to provide approximately 20% relative improvement in SID
error rates over the use of MFCCs alone (see Section 4.1). In this
study we compare three different techniques for delta computation:

• Two-point difference (TPD): The most simple approach to
deltas is to use the difference between two points equidis-
tant from the point of interest that is central to the window of
analysis. For the d′th dimension of features X at time t, the
delta value4d(t) = Xd(t+ l)−Xd(t− l), where the anal-
ysis window length N = 2l + 1. Note that in this approach,
values within the window itself are not utilized.

• Least-squares fit (LSF): Given a window of N samples
around Xd(t), deltas are calculated as the least square lin-
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ear fit to the samples. In practice this is done by convolving
the samples with a linear impulse response from −l to +l.

• Filter (FILT): Deltas are calculated as the output of the signal
processed by a filter defined by the window [-0.25, -0.5, -0.25,
0, 0.25, 0.5, 0.25]. Here, the length of the analysis window
N = 7, and forms the approach that has used in SRI’s SID
and LID systems for the past decade. Increasing the length
of the analysis window involves inserting zeros at the center
point of the window.

Note that each of these techniques can be expressed as dif-
ferent transfer functions of a time-domain filter. Once computing
deltas of an input signal, double deltas can be computed through re-
application of the same delta technique to the signal composed by
the deltas. A comparison of these techniques and their sensitivity to
the size of analysis window is given in Section 4.1.

2.2. 2D-DCT Contextualization

The use of DCTs for contextualization (that is, across time instead
of across frequencies as done for MFCCs) is commonplace in the
field of speech recognition [3, 5, 6] and has shown to be effective for
LID [4]. Recent advances in noise-robust speech activity detection
(SAD) and LID have highlighted the benefits of using modulation
features computed via the DCT over the use of deltas and shifted
delta cepstrum [9, 2]. These studies extract coefficients from a DCT
matrix computed over a window of frames from short-term features
such as MFCCs. We note that the 2D-DCT matrix of log Mel fil-
terbank energies is equivalent to taking the DCT of MFCCs over a
window of frames if all cepstral coefficients are selected from the
filter bank. The challenge is then to select the most useful elements
from the DCT matrix of coefficients for the purpose of SID.

In our recent work on noise-robust LID [2], a DCT matrix was
computed from 7-dimensional MFCCs over N = 41 frames, thus
encompassing a larger context than required for SID. The first row
corresponding to the average of MFCCs was discarded and rows 1–9
were appended to the MFCC feature that was central to the analysis
window. We replicate this DCT selection strategy for SID, however,
due to a greater number of coefficients in SID (20 as opposed to 7
for LID), we restrict coefficients to rows 1 and 2 so as to produce 40
dimensions to be appended to the MFCCs, thus being comparable in
dimensionality to deltas and double deltas. This rectangular parsing
strategy is termed ‘MFCC+DCTrec’ for this study.

The sub-rectangle of coefficients selected via DCTrec places
more emphasis on the frequency axis as opposed to time, where co-
efficients are less robustly estimated as the corresponding frequency
increases. Desired is a selection strategy that captures a robust spec-
trotemporal profile from speech. Selecting the more robustly esti-
mated DCT coefficients from the low-frequency bands is one means
of accomplishing this. To this end, we borrow the technique of zig-
zag selection from the related field of image processing [7], where
it facilitates entropy encoding. In face recognition, the use of 2D-
DCTs and the zig-zag parsing strategy is commonplace for GMM-
and HMM-based recognition systems where coefficients are selected
from square blocks of pixels values [10, 11]. We adapted this parsing
strategy to accommodate a rectangular DCT matrix, which is depen-
dent on the both the number of filter banks and analysis frames com-
puted from speech frames. The devised selection strategy first con-
structs an outer product matrix of vectors F =
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where f is the number of filter-

banks and w = N − 1 is the size of the analysis window after re-
moving the first row of the 2D-DCT which represents the mean over

Fig. 1. Dark blocks indicate coordinates of the 60 2D-DCT coef-
ficients selected based on the devised zig-zag parsing strategy after
skipping the first row.

the analysis window (the inclusion of which was found to reduce
SID performance). The coordinates of the C highest values in the
outer product matrix are then used to select the 2D-DCT coefficients
for use in SID. Figure 1 provides an example of the coefficients se-
lected when C = 60. While not explored in this work, it is worth
noting that the ratio of the number of filterbanks and the number of
frames in the window will alter the parsing and this warrants future
exploration. DCTs selected using this technique will be referred to
as DCTzz . Section 4.2 compares the use of appending DCTzz coef-
ficients to MFCC features versus their use as a standalone feature.

3. EXPERIMENTAL PROTOCOL AND SYSTEM
CONFIGURATION

Two main protocols and system configuration combinations were
used in this study. Both use simple GMM-based speech activity de-
tection as defined in [12] and an i-vector/probabilistic linear discrim-
inant analysis (PLDA) framework [13, 14].

Simplified PRISM: For the purpose of tuning, a small-scale,
gender-independent system [15] was used. This system based on the
PRISM protocols [8]. A diagonal covariance universal background
model (UBM) with 512 Gaussian components was trained using a
subset of 3220 samples from the original PRISM training list while
the 400-dimensional i-vector subspace was trained using 6440 sam-
ples. Evaluation was performed on both non-degraded audio (sre10)
lists and noisy (noi) lists to evaluate any trade-off between clean
speech performance and noise-robustness during feature tuning. For
rapid evaluation turnaround, only a subset of clean trials were used
consisting of 14080 target and 688125 impostor trials from 2483
single-segment models and 3824 test segments. Performance is re-
ported in terms of equal error rate (EER) and the minimum decision
cost function (DCF) defined in the SRE’08 evaluation protocol [16].

Full SRE’12 System: A gender-dependent system was trained
based on the protocols used in the development of our SRE’12 sub-
mission [12] in order to evaluate the tuned features. The number
UBM components increased to 2048 and was trained using a sub-
set of 8000 clean speech samples; the i-vector subspace was trained
using 51224 samples from which 600D i-vectors were extracted.
PLDA and 300-dimensional LDA for i-vector reduction was trained
using using a similar extended dataset of 62277 samples (26k of
which were re-noised). Evaluation was performed on female trials of
the five conditions defined by NIST based on the extended protocol
with performance reported in terms of Cprimary [17] and EER.

4. RESULTS

The techniques for delta calculation detailed in Section 2.1 are first
compared across varying analysis window sizes. The use of 2D-DCT
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Fig. 2. Analyzing three delta calculation algorithms on the subset
of clean and noisy PRISM data (solid and dashed lines respectively)
with various analysis window sizes using 20D MFCCs+44.

coefficients to replace delta-based contextualization is then evaluated
along with their associated benefits over MFCCs.

4.1. Evaluating Delta Contextualization

This section compares different algorithms for delta calculation
across different sizes of analysis window using MFCCs appended
with 44. The motivation for this comparison is documentation of
the parameter tuning of this process in the context of the modern
i-vector/PLDA speaker recognition framework, and for a fair com-
parison to the proposed use of 2D-DCT coefficients. Figure 2 plots
the EER obtained on the PRISM protocol from these experiments.

The baseline system without contextualization (i.e., 20D raw
MFCCs) offers an EER of 10.4% and 9.2% in the clean and noisy
conditions respectively1. All results in Figure 2 surpass these to
varying degrees. The three methods of delta calculation are com-
parable in clean conditions, similarly varying with the size of anal-
ysis window. At windows beyond 9 frames, TPD tended to reduce
performance compared to LSF and FILT. More variation between
techniques were observed in the noisy speech trials, in which FILT
deltas offered the best performance with an analysis window of 7
frames. TPD was the poorest choice for noise robustness while LSF
was comparable to FILT at larger window sizes. Use of FILT with
an analysis window of 9 frames offered the greatest average relative
improvement of 20% over the baseline MFCC system, when aver-
aged for clean and noisy conditions, and will be used for delta-based
contextualization for the remainder of this study.

4.2. Evaluating 2D-DCT Contextualization

Experiments in this section evaluate the use of several contextual-
ization techniques based on the 2D-DCT matrix of log Mel filter-
bank energies in place of 44 computation. The three techniques
evaluated are 40-dimensional MFCC+DCTrec and MFCC+DCTzz

in which coefficients are appended to 20D MFCC features, and 60-
dimensional DCTzz coefficients extracted directly from the log Mel
filterbank outputs without raw MFCCs. Results across various anal-
ysis window sizes are given in Figure 3.

Figure 3 illustrates that the proposed DCTzz features provided
the best performance in both clean and noisy conditions. The
improvement of DCTzz coefficients over coefficients appended to

1Noisy trials are based on re-noised (and some clean) microphone seg-
ments attributing to the apparent performance gain over clean segments in
which miscalibration between tel and int segments exists.

Fig. 3. Comparing DCT contextualization with and without MFCCs
using various analysis window sizes on the subset of clean and noisy
PRISM data with 60-dimensional features.

MFCC was more evident in the case of noisy speech. Interestingly,
appending 2D-DCT coefficients to MFCCs provided little if any im-
provement over the baseline MFCCs in noisy conditions. The opti-
mal window size for clean speech was between 15 and 21; noisy tri-
als showed less sensitivity to a window size of less than 21. The best
average improvement of 16% over the baseline system was found us-
ing a window size of 15 for the 2D-DCT matrix. This is comparable
to the optimal context of deltas when considering that the optimal
delta window of 9 is equivalent to 17 when taking into account the
total number of frames needed to append double deltas.

Figures 2 and 3 show that both deltas and DCT contextualization
offer the same trend of preference for larger analysis windows for
clean speech and smaller windows for noisy speech. Performance
on noisy speech from delta-based contextualization in Figure 2 is
considerably better than the DCT-based techniques. Results in these
figures are based on a fixed dimensionality of 60. The following
section explores whether this is optimal for all techniques.

4.3. Coefficient Counts

When using delta techniques to contextualize MFCCs, one first has
to select both the number of coefficients and the number of delta
processes. In the proposed DCTzz features, increasing the number
of extracted coefficients relates to more information relevant to the
reconstruction of the log Mel filterbank outputs from the 2D-DCT.
Thus an arbitrary selection of coefficients is possible.

In this section, we vary the feature dimension from DCTzz (win-
dow size 15) to observe effects on SID performance on clean and
noisy data. For a thorough comparison, raw MFCCs along with dif-
ferent delta contextualizations are evaluated including triple deltas
(4,44,444). Figure 4 details the results. On clean speech in
Figure 4(a), we note a general preference for lower dimensionality,
with MFCC+4 offering the best performance with as few as 28 di-
mensions. The proposed DCTzz approach was comparable to triple
deltas with the best operating dimensionality at 60 dimensions. In
contrast to clean speech, noisy trials found that additional contex-
tualization through double deltas was beneficial. Furthermore, Fig-
ure 4(b) illustrates a trend toward increased dimensionality. This
trend was particularly the case for the DCTzz with as many as 110
dimensions providing best performance for this feature compared to
48 for MFCC+44. Both MFCC+44 and DCTzz illustrated im-
proved noise-robustness with a feature dimension beyond the opti-
mal for clean speech.

The use of 60 coefficients provided the best clean speech
performance from DCTzz coefficients and 42 dimensions from
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(a) PRISM Clean (b) PRISM Noisy

Fig. 4. Performance of delta and 2D-DCT contextualizations as the feature dimension varies on subset of clean and noisy PRISM data.

Fig. 5. Performance on conditions c1–5 of SRE’12 female trials using MFCC+44, and 2D-DCT coefficients with different dimensions.

MFCC+44. In contrast, noisy speech trials found benefit from the
use of more coefficients: 60 dimensions for MFCC+44 and 110
for DCTzz. The following section aims to determine the extent to
which this sensitivity to dimensions exists on a large system.

4.4. NIST SRE’12 Evaluation

This section aims to determine whether the tuned analysis win-
dow and coefficient counts generalized2 to the evaluation of the
SRE’12 dataset on a large scale system as defined in Section 3.
Figure 5 details results using the best delta and DCT configurations
(MFCC+44 and DCTzz, respectively) with feature dimensionality
tuned on both clean and noisy speech.

Comparing 14D and 20D MFCC+44 performance indicates
that the additional raw features provided no additional robustness to
noise, as anticipated based on findings in Section 4.3. This does,
however, reflect the findings of [18]. The same observation can be
made for the proposed DCTzz coefficients for which 110D coeffi-
cients did not improve on 60D for the noisy conditions, however
the DCTzz system appears to be less sensitive to the number of co-
efficients than MFCC+44. In contrast to the small development
corpus used in previous sections, 60 DCTzz coefficients provided
a significant 25% relative improvement in Cprimary and EER for
clean telephone speech over the same dimensionality MFCC+44.
Similarly, Cprimary improvements in renoised (c4) and noisy (c5)
telephone speech were 15% and 21%, respectively. Clean and noisy
microphone trials were, however, comparable between MFCC+44

2A term to be used lightly given the bulk of SRE’12 data exists in the
PRISM set, however the noises of SRE’12 when not observed during tuning.

and DCTzz with 60-dimensional features. When comparing both
features tuned on clean speech, 42-dimensional MFCC+44 offered
some improvement over DCTzz of 60 dimensions for microphone
trials in terms of Cprimary. The proposed approach, however, main-
tained Cprimary improvements of 9-14% relative to MFCC+44 on
telephone speech.

Two unexpected trends were observed in the above results: re-
duced MFCC+44 dimensionality improved almost every condi-
tion of SRE’12 over the state-of-the-art 60-dimensional configura-
tion and additional coefficients did not improve noise-robustness as
anticipated based on feature tuning results. One hypothesis for these
findings is the additional use of re-noised data in the PLDA and LDA
models of the large system which has been shown to provide im-
proved noise-robustness from 60-dimensional features [12]. Future
research will determine the strength of this hypothesis.

5. CONCLUSIONS

We proposed the use of 2D-DCT coefficients from log Mel filter-
bank outputs to replace the widespread use of MFCCs with appended
deltas and double deltas. Based on the success of DCTs for contex-
tualization in speech processing and a coefficient selection scheme
to capture information attaining to spectrotemporal profiles, the pro-
posed 2D-DCT approach provided considerable improvements over
the state-of-the-art MFCC+44 system on clean and noisy tele-
phone speech with 60 dimensions in the context of the recent NIST
SRE’12 dataset. The proposed features exhibited less sensitivity to
the choice of dimensions compared to the MFCC counterpart. Future
work will improve selection of coefficients with particular regard to
the preference of frequency versus time from the 2D-DCT matrix.
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