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ABSTRACT 

 

Communication system mismatch represents a major 

influence for loss in speaker recognition performance. 

While microphone and handset differences have been 

considered in the NIST SRE, nonlinear communication 

system differences, such as modulation/demodulation 

(Mod/DeMod) carrier drift, have yet to be considered. In 

this study, an algorithm for estimating and correcting 

Mod/DeMod frequency offsets distortion in signal side-

band modulation (SSB) speech is formulated based on two 

processing steps. In the first step, the offset of speech can be 

roughly scaled to a small frequency interval, which 

eliminates the ambiguity caused by periodicity of the 

spectrum. The second step performs fine-tuning within the 

pre-determined interval. For the first time, a statistical 

framework is developed for unique interval detection, where 

an innovative acoustic feature is proposed to represent 

different offsets and state-of-the-art techniques, the total 

variety method and PLDA, are applied. Speaker recognition 

experiments on SSB speech obtained from DAPPA RATS 

corpus show that a significant performance improvement 

(up to 50% relative improvement in EER) for speaker 

verification in SSB speech can be obtained by the proposed 

estimation and compensation method. 

Index Terms— frequency offset, SSB, speaker 

verification, MFCC, i-Vector, PLDA 

 

1. INTRODUCTION 

In radio communication, single side-band (SSB) 

communication is an important and commonly used 

contemporary communicative approach. The main reason 

for its popularity lies in the advantages of power saving and 

narrow bandwidth introduced by the techniques for 

suppressing or removing the carrier signal and one sideband, 

while only leaving a single sideband in the transmitted 

signal. These advantages are very appealing as the radio-

frequency spectrum, once thought to be adequate for all 

needs, is becoming crowded due to increased data/voice 

traffic requirement in today’s wirelessly connected society. 

    A disadvantage of SSB transmission is that the received 

signal is easily distorted by a frequency offset introduced by 

a mismatch between the carrier frequency of the received 

signal and the carrier frequency used in demodulation. For 

speech signals, the distortion of frequency shift makes the 

speech unpleasant, sounding strange and ‘Donald Duck’-

like to the listener, and results in poor quality and 

intelligibility of the speech signal [1]. Moreover, frequency 

offset causes a problem in automatic speech and speaker 

recognition because it affects features based on spectral 

structure such as MFCCs and PLPs. In this study, we 

explore the problem of automatically estimating frequency 

offset in SSB speech, in order to help improve speaker 

recognition in radio communication data. 

A number of studies have been reported to detect and 

correct frequency offset in SSB speech [2,3,4]. Most of 

these methods are based on the relationship between the 

estimated pitch f0 and the observed peak locations 

corresponding to the harmonics of f0 in voiced speech. If the 

signal is distorted by a frequency offset Δf, although linear 

shifts destroy the expected harmonic relationship between 

individual components, the spacing between the actual 

harmonic components remains unchanged. In [2], both f0 

and the positions of several spectral peaks, p(n), are 

estimated, and Δf is deduced from the linear relationship 

Δf=p(n)-nf0. In [3,4], a comb filter with a spectral period 

equal to f0 and a moving phase was fitted to the spectrum of 

voiced speech. Δf was then estimated as the phase of the 

best fitting comb filter. The ambiguity is obvious from this 

framework: if Δf is a possible frequency shift, Δf± nf0 

(n=1,2,3…) are also possible options. [3] overcame this 

problem by accumulating the maximum value of correlation 

from frame to frame as a histogram. Δf was estimated as the 

position that gives the maximum in histogram. The method 

obtained effective results given sufficiently long speech 

signals. [5] used a probabilistic estimation method to 

overcome the above limitation. Recently, a work was 

developed in [6] to estimate Δf using a modulation spectral 

analysis. 

In this study, we propose a two-step method to estimate the 

frequency offset in an SSB speech signal. In the first step, 

the value of Δf is scaled to a unique interval smaller than f0 

by a statistical method; the board ambiguity can be mostly 
eliminated with this step. Next, a fine-tuning is performed 

within the predetermined unique interval to estimate Δf 

without uncertainty. [7] proposed a statistical method to 

detect any frequency shifts of a speech signal. In this study, 
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we make modifications on the algorithm in [7] and apply it 

to the SSB signal in step one.  

    For validation, a state-of-the-art speaker verification 

system is established [8-13]. 

    In Sect. 2, an overview of the proposed two-step method 

is presented. Techniques used in the first stage to improve 

the result, symmetric partial spectral smoothed MFCC, i-

Vector and PLDA are discussed in Sect. 3-Sect. 5, 

respectively. Experimental results and discussion are 

presented in Sect. 6. 

 

2. OVERVIEW OF METHOD 

The proposed offset estimation method is based on two 

steps (Fig. 1). In the first step, a unique interval that 

contains the possible frequency offset without ambiguity 

caused by the periodic property in frequency is detected, 

which means that only one value in this interval can be the 

possible candidate for more-refined estimation results in the 

second step. This condition requires that the length of each 

unique interval should be less than the speech pitch 

frequency. In this study, an interval of 50Hz is considered to 

satisfy this requirement, given that the pitch values of most 

speakers are between 60Hz and 200Hz. A statistical method 

proposed in [7] is used to obtain this unique interval. Once 

the unique interval is identified, a fine search for the 

frequency offset within this frequency interval is carried out 

in the second step.  

 

 

 

 
Fig.1: Block diagram of the overall frequency offset estimate  

2.1 Unique range detection 

A frequency offset range from -300Hz to 300Hz is divided 

into small bins of 50Hz without overlap, which we call 

unique intervals. Each utterance is segmented into 40ms 

frames with a 20ms overlap. Voice activity detection (VAD) 

is used to choose the frames with the offset information. A 

feature is needed for each voice active frame representing 

different frequency offsets. MFCC is a feature successfully 

used in speech, speaker, and language recognition [12, 13]. 

MFCC is even better suited for representing frequency 

offset because the energy in the frequency bands varies with 

spectrum shifts upward or downward. The energy variation 

due to frequency offset appears to be constant within a short 

period of speech for a certain offset frequency but varies 

when the offset value changes. This simple fact leads us to 

use a modified MFCC as an acoustic feature representing 

frequency offsets. The feature works successfully in unique 

interval detection. Next section describes how we modify 

the MFCC feature to make it more efficient for this task. 

After acoustic features extraction, the total variety 

method was used to extract i-Vectors for each utterance. 

Finally, a generative model PLDA was used to decide 

which unique interval should be labeled for the utterance. 

2.2 Fine estimation of frequency offset value 

Once the unique interval is detected, value of the frequency 

offset can be finely searched within the unique interval. A 

measurement of pitch frequency that is reliable in the 

presence of both additive noise and the frequency offset is 

required. ‘Complex correlation’, suggest by [3] is used in 

this study to estimate pitch frequency. Mathematically, 

given S(0), S(1)…,S(N-1), representing the power spectrum 

on positive frequencies, the complex correlation 

C(0),C(1), …,C(N-1) is given by the following equation: 
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for n=0,1,…,N-1. It is proven that the pitch period T can be 

estimated as the index that provides the maximum value of 

the magnitude of complex correlation, after ruling out the 

first few indexes. The estimate of pitch frequency f0 is 

obtained by the relation: 
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A quadratic interpolation is used to obtain a more accurate 

estimate Tc and the corresponding C(Tc) because the real T 

is not always an integer [3]. 

With the estimated pitch frequency and corresponding 

complex correlation value, a set of possible values of 

frequency offset Δf for a given frame can be calculated from 

the real and imaginary parts of C(T) according to the 

following equation [3]: 
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where r denotes individual possible values of Δf that are f0 

apart. There are several possible values that can be chosen 

that correspond to different values of r, which is where the 

unique interval comes into play. We only need to pick the 

value of Δf from (3) that falls into the pre-determined 

unique interval. Because there is only one possible value 

within this interval, the possibility of picking the wrong 

candidate has been dramatically reduced as long as the 

correct unique interval was identified. Additionally, 

compared to other existing methods, a shorter speech is 

sufficient to make an accurate estimate. 

 

3. SYMMETRIC PARTIAL SMOOTHED SPECTRAL 

MFCC (SPSSMFCC) 

An innovative aspect of the developed method is the step 

that determines a unique range in which only one potential 

value exists before finer estimation is attempted. A powerful 

feature that can represent the characteristics for different 

frequency offsets is indispensable for the statistical 

framework. Here, we propose modifying two aspects of the 

standard MFCC based on the observation of the speech 

spectrum with frequency offset. First, the frequency shift 

varies slower than the speech spectrum. The spectrum 

component in the frequency domain due to the frequency 

shift remains constant for a relatively long duration 

compared to a short time variation in the speech spectrum. 

SSB  

speech 
Unique Interval Detect 

FFT Pitch estimate Fine Tuning Δf 
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        In this study, the spectrum component corresponding 

to the frequency offset is assumed to be unchanged within 

one utterance. Consequently, instead of pursuing the 

spectrum variation along time, extracting and enhancing the 

invariant components in the spectrum over a long-term 

range is more reasonable. Based on this idea, we propose 

smoothing the spectrum over adjacent frames to emphasize 

the constant component while reducing fast varying 

components in the speech signal. The second observation is 

that the useful information for a frequency offset is reflected 

in spectrum variation in low frequencies (positive offsets) or 

high frequencies (negative offsets), while the spectrum 

component in the middle frequency range bears little 

information about frequency offset. In view of this fact, two 

modifications are made to the mel-frequency filter bank in 

the MFCC calculation: we propose to use a filter bank 

where the width of the filters are symmetric to the middle 

frequency to capture the frequency offset information at 

both high and low frequency range, and discard the filters in 

the middle frequency range and use those on the two ends. 

Fig. 2 demonstrates the process of this symmetric 

Partial Smoothed Spectral MFCC (SPSSMFCC) calculation. 

The overall process is similar to a MFCC calculation except 

for the spectrum smoothing and filter bank shape. 

Specifically, after pre-emphasis and segmentation, each 

speech frame is transformed into the frequency domain by 

DFT. After that, the spectrum is smoothed by averaging the 

spectra of each frame with its adjacent frames. The length of 

the smoothing window can be varied with frequency. Here, 

we set the window length to 3 for all frequencies for a 

simple initial attempt. Following smoothing, a vector of 

spectral power representation is calculated by applying the 

symmetric partial mel-frequency filter bank described above 

to the smoothed spectrum. The number of filters in the filter 

bank was determined empirically. The optimal number is 80 

by experience. A discrete cosine transform (DCT) is applied 

to the logarithm of the power representation. The first 12 

DCT coefficients and log of the energy constitute the 13-

dimensional SPSSMFCC coefficients, which is 

concatenated with its first and second differential ∆, ∆∆ to 

form a 39-dimensional feature vector for each signal frame. 

 

4. I-VECTOR 

The total variability approach has become the state-of-the-

art technique in speaker recognition field [14-17]. This 

approach is efficient in reducing the large-dimensional input 

data to a small-dimensional feature vector named i-Vector, 

while retaining most relevant information. We believe that 

useful frequency offset information can be obtained by a 

similar front-end process. Therefor we applied the total 

variability approach in frequency offset detection. For a 

given utterance, the offset and channel variability dependent 

GMM supervector can be denoted by the following equation: 

              
UBMM m Tw                    (4)                                 

where mUBM is the UBM supervector, T is total variability 

space, and the entries of the vector w is the i-Vector. To 

calculate i-Vector, we need the Baum-Welch statistics: 
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where c=1,…,C is the Gaussian index and P(c | yt,Ω) is the 

posterior probability of mixture component c generating the  

  
Fig. 2:  Diagram of the SPSSMFCC calculation 

 

vector yt. The centralized first-order Baum-Welch statistics 

are also needed in i-Vector estimation: 
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where mc is the mean of UBM mixture component c. Given 

the above statistics, the i-Vector for an utterance can be 

obtained using the following equation: 

          1 1 1( ( ) ) ( )t tw I T N u T T F u                      (8) 
where N(u) is a diagonal matrix of dimension CF*CF whose 

diagonal blocks are NcI (c=1,…,C). (u)F  is a vector of 

dimension CF*1 obtained by concatenating first-order 

Baum-welch statistics 
cF  for a given utterance u. Σ is a 

diagonal covariance matrix of dimension CF*CF estimated 

during the factor analysis training that models the residual 

variability not captured by the total variability matrix T. The 

total variability matrix T is trained by the same EM 

algorithm of the total variability space estimation for 

speaker recognition assuming that each utterance is shifted 

by a value within different interval. Detailed total variability 

matrix T estimation algorithm can be found in [16]. 

 

5. PLDA 

The probabilistic linear discriminant analysis (PLDA) 

model is a probabilistic generative model that has been used 

as the backend strategy for fixed-length input vectors 
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[18,19,20]. We use PLDA in our system as a backend 

scoring strategy. The generative model can be described as 

                        w m Vy Ux                                 (9) 

where V represents the offset subspaces and U represents 

the channel subspace. y is the offset related hidden variable 

used to evaluate the log-likelihood ratio for the hypothesis 

test corresponding to the hypothesis that “the two i-vectors 

were or were not generated by the same class.” 
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Fig. 3: Results of fine-tuning with and without unique interval 

detection (UID) using different utterance lengths.  
 

6. EXPERIMENTS AND DISCUSSION 

 

6.1. Frequency offset estimation 

The DARPA RATS corpus [21] contains voice 

communications in various languages transmitted over 

several adverse radio channels, one of which corresponds to 

SSB transmission. Performance of the developed system is 

first evaluated using the data simulated for this channel by 

artificially applying frequency shifts and additive noise, 

which is extracted from the SSB channel, to clean source 

speech. For the training data, shift values are set as the 

center of each unique interval bin representing the values 

within the interval; for testing data, shift values are 

randomly distributed between -300 Hz and 300 Hz. Noise is 

added at SNR level of 20dB, 10dB and 0dB respectively. 

Performance is evaluated in terms of the estimation 

accuracy calculated as the percentage of estimates that fall 

within 5Hz of the correct value. Fig. 3 demonstrates results 

of fine-tuning with/without the proposed unique interval 

detection step with various data lengths. The unique interval 

detection dramatically improves the estimation accuracy 

(more than 40% improvement on average). Additionally, the 

results reach the best value and remain stable after 5s in data 

length, which is much shorter than other methods which 

require tens even hundreds seconds of data. 

 

6.2. Application to speaker verification 

The proposed frequency shift estimating system is also 

applied to the SSB channel of the RATS corpora for speaker 

verification. For each utterance, a 5s segment is used to 

estimate the frequency offset of the entire speech by the 

proposed system. Next, the offset is compensated by being 

shifted with the estimated value in opposite manner by the 

following equation: 

            (n) Re{ ( )exp( 2 ( / ) )}sy x n j f f n              (10) 

The compensated voice transmissions are processed by 

speaker verification system using MFCC as acoustic feature. 
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Fig. 4:  DET curve under four training and testing conditions 

 

Table 1:  EERs (%) with two training conditions 

 Unmatched training Matched training 

w/o compensation 26.1 5.8 

w compensation 13.1 5.5 

A 256-mixture, gender-independent UBM was trained using 

the training data. The UBM means were used to train a 400-

dimensional i-Vector using the development set. The 

resulting i-Vectors were then used to train a PLDA system, 

producing a 100-dimensional subspace for the final scoring. 

The results are compared according to whether the testing 

data are compensated using the proposed estimate algorithm 

under two conditions: (1) training using clean source speech 

unmatched with distorted/compensated testing data, and (2) 

training using compensated speech matched with testing 

data. Fig. 4 plots DET curve of speaker verification results. 

Table 1 shows the numerical results of EERs. Improvement 

was observed in either training condition when the testing 

voice transmissions are compensated, and the improvement 

is significant when training and testing are unmatched (a 

relative improvement of +5% for unmatched training and 

50% for unmatched one).  

 

7. CONCLUSION 

In this study, we proposed a two-step strategy for estimating 

frequency offsets in a SSB Mod/DeMod communication 

channel. First, a unique interval is detected for each shifting 

degraded speech segment in which the estimation ambiguity 

can be eliminated. Next, fine-tuning is carried out within the 

unique interval. A statistical method is developed in the first 

step. We proposed a novel acoustic feature, SPSSMFCC, 

which can effectively represent different frequency shifts, as 

proven by our experiments. The total variability method and 

PLDA techniques are also used in the unique interval 

detection. The compensation according to the offset 

estimated by the proposed system is shown to be able to 

improve the speaker verification performances in both the 

matched (+5% relative improvement) and the unmatched 

training condition (50% relative improvement). 

4053



8. REFERENCES 

 
[1] P. Assmann, S. Dembling, and T. Nearey, “Effects of 

frequency shifts on perceived naturalness and gender information 

in speech,” in Proceedings of the 9th International Conference on 

Spoken Language Processing, 2006, pp. 889–892. 

[2]  J. Suzuki, T. Shimamura, and H. Yashima, “Estimation of 

mistuned frequency from received voice signal in suppressed 

carrier SSB,” in Global Telecommunications Conference, 

GLOBECOM’94. Communications: The Global Bridge., IEEE, 

vol. 2, pp. 1045–1049,1994 

[3] R. J. Dick, “Co-channel interference separation”, Rome Air 

Development Center, Tech.Rep. RADC-TR-80-365, December 

1980 

[4] D. Cole, S. Sridharan, and M. Moody, “Frequency offset 

correction for HF radio speech reception,” Industrial Electronics, 

IEEE Transactions on , vol. 47, no. 2, pp. 438–443, 2000 

[5] T. Gülzow, U. Heute, and H. Kolb, “SSB-carrier mismatch 

detection from speech characteristics: Extension beyond the range 

of uniqueness.” in Proc. EUSIPCO, 2002. 

[6] P. Clarke, H. Mallidi, A. Jansen, and H. Hermansky, 

“Frequency offset correction in speech without detecting pitch” in 

Proc. ICASSP, 2013. 

[7] H. Xing and P. Loizou, “Frequency shift detection of speech 

with GMMs and SVMs”, in Signal Processing System (SIPS), 

workshop on, IEEE, 2012, pp.215-219 

[8] G. Liu, et al., "UTD-CRSS systems for NIST language 

recognition evaluation 2011", NIST 2011 Language Recognition 

Evaluation Workshop, Atlanta, USA, 6-7 Dec. 2011. 

[9] Y. Lei, et al., “The CRSS Systems for the 2010 NIST Speaker 

Recognition Evaluation,” NIST 2010 Speaker Recognition 

Evaluation Workshop, Brno, Czech Republic, 24-25 Jun. 2010. 

[10] R. Saeidi, et al., "I4U submission to NIST SRE 2012: A large-

scale collaborative effort for noise-robust speaker verification", in 

Proc. INTERSPEECH, Lyon, France, 25-29 Aug.,2013. 

[11] J.W. Suh, S. Sadjadi, G. Liu, T. Hasan, K.W. Godin, and 

J.H.L. Hansen, "Exploring Hilbert envelope based acoustic 

features in i-vector speaker verification using HT-PLDA", 

SRE2011 Workshop,Atlanta, USA 

[12] G. Liu, Y. Lei, John H.L. Hansen, “Robust feature front-end 

for speaker identification,” in Proc. ICASSP, Kyoto, Japan, 2012, 

pp.4233-4236. 

[13] G. Liu, John H. L. Hansen. “A systematic strategy for robust 

automatic dialect identification”, EUSIPCO, Barcelona, Spain, 

2011,  pp.2138-2141 

[14] D. Najim, et al. “Front-end factor analysis for speaker 

verification,” Audio, Speech, and Language Processing, IEEE 

Transactions on , vol. 19, no. 4, pp. 788-798, 2011 

[15] C. Yu, G. Liu, S. Hahm, and J.H.L. Hansen, "Uncertainty 

Propagation in Front End Factor Analysis For Noise Robust 

Speaker Recognition," in Proc. ICASSP, Florence, Italy, May 

2014. 

[16] K. Patrick, G. Boulianne, and P. Dumouchel. “Eigenvoice 

modeling with sparse training data,” Speech and Audio Processing, 

IEEE Transactions on, vol. 13, no. 3, pp. 345-354, 2005 

[17] V. Hautamaki, KA. Lee, D. Leeuwen, R. Saeidi, A. Larcher, 

T. Kinnunen, T. Hasan, SO. Sadjadi, G. Liu, H. Boril, John H.L. 

Hansen and B. Fauve, “Automatic regularization of cross-entropy 

cost for speaker recognition fusion”, in Proc. INTERSPEECH, 

Lyon, France, 25-29 Aug., 2013.  

[18] I. Sergey. “Probabilistic linear discriminant analysis,” 

Computer Vision–ECCV 2006. Springer Berlin Heidelberg, 2006, 

pp. 531-542 

[19] G. Liu, T. Hasan, H. Boril, J.H.L. Hansen, “An investigation 

on back-end for speaker recognition in multi-session enrollment,” 

in Proc. ICASSP, Vancouver, Canada,  May 25-31, 2013. pp. 

7755-7759. 

[20] T. Hasan, SO. Sadjadi, G. Liu, N. Shokouhi, H. Boril and J. 

H.L. Hansen, “CRSS systems for 2012 nist speaker recognition 

evaluation,” in Proc. ICASSP, Vancouver, Canada, 2013,  pp. 

6783-6787. 

[21] K. Walker and S. Strassel, “The RATS radio traffic collection 

system,” Odyssey: The Speaker and Language Recognition 

Workshop, 2012. 

 

4054


