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ABSTRACT

In this study, we explore the propagation of uncertainty in the
state-of-the-art speaker recognition system. Specifically, we
incorporate the uncertainty associated with observation fea-
tures into the i-Vector extraction framework. To prove the
concept, both the oracle and practically estimated uncertainty
are used for evaluation. The oracle uncertainty is calculated
assuming the knowledge of clean speech features, while the
estimated uncertainties are obtained using SPLICE and joint-
GMM based methods. We evaluate the proposed framework
on both YOHO and NIST 2010 Speaker Recognition Evalu-
ation (SRE) corpora by artificially introducing noise at dif-
ferent SNRs. In the speaker verification experiments, we con-
firmed that the proposed uncertainty based i-Vector extraction
framework shows significant robustness against noise.

Index Terms— robust speaker recognition, uncertainty
propagation, i-Vector

1. INTRODUCTION

Speaker recognition systems based on i-Vector extraction and
PLDA classifier are able to obtain relatively high accuracy
under clean as well as channel mismatched conditions [1–8].
However, performance degrades dramatically in the presence
of background noise [9–12]. As the real world applications
of speaker recognition system often involve various degree
of environmental noise [13], developing noise robust speaker
recognition systems are of great importance.

In a conventional i-Vector extraction framework, the i-
Vector of the given test utterance is computed as the condi-
tional expectation of i-Vector distribution given the observa-
tion features [14]. When those observation features are cor-
rupted by noise, the extracted i-Vectors become unreliable as
well. A number of studies have been proposed to compen-
sate this effect either by removing the noise or estimating the
clean features prior to the i-Vector extraction [15, 16]. While
these enhancement methods could improve the robustness of
the speaker recognition system in noise, the perfect estimation
of clean speech features are always not achievable. Moreover,
the estimation errors of those enhancement methods are un-
equally distributed, causing certain features to be less reliable

than others. Therefore, it is beneficial to quantify the reliabil-
ity associated with those features and incorporate them in the
speaker recognition system.

Previous studies have investigated the incorporation of
acoustic feature uncertainty in traditional GMM-UBM based
systems [17, 18]. The uncertainty associated with i-Vector
representations have also been studied for propagating in
back-end classifiers [19–22]. However, to the best of our
knowledge no studies have yet attempted the propagation of
uncertainty in the front end i-Vector extracting process. The
purpose of this study is to derive an uncertainty modified
i-Vector extraction framework to (1) make the i-Vector ex-
traction system focusing on the reliable or reliably enhanced
features, and (2) to further deliver the uncertainty of features
to the back-end classifier which has not been achievable due
to the front end factor analysis process.

In Sec. 2, we present a short overview of the conventional
i-Vector extraction framework. Sec. 3 contains the derivation
of the proposed uncertainty modified i-Vector extraction sys-
tem. In Sec. 4, we present results to show the effectiveness of
the proposed framework.

2. FRONT END FACTOR ANALYSIS

In this section, we present a short overview of the conven-
tional i-Vector extraction framework. In a conventional i-
Vector extraction framework, speaker and channel dependent
GMM supervector is modeled as follows:

M = m+ Tw, (1)

where m is the supervector obtained from the universal back-
ground model (UBM), T is the low rank total variability ma-
trix representing the basis of reduced total variability space,
and w is the low rank factor loadings referred to as i-Vectors.

The estimation of the total variability matrix T employs
expectation maximization (EM) method as described in [14].
After training the total variability matrix, the i-Vector of given
speech utterance is extracted as the conditional expectation of
i-Vector distribution given observation features.

w∗s = E[P (ws|Xs)], (2)
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where w∗s is the i-Vector of the given speech utterance s, Xs

is the clean observation features, P (ws|Xs) is the conditional
distribution of the i-Vector given observation features, and
E[·] indicates the expectation. Finally, the i-Vector of the
given speech utterance can be represented using the Baum-
Welch zeroth (Ns) and centralized first (Fs) order statistics,

w∗s = (T ′NsΣ
−1T + I)−1TΣ−1Fs, (3)

where Σ is the covariance matrix obtained from UBM model
and I is the identity matrix.

3. UNCERTAINTY PROPAGATION

3.1. Uncertainty modified i-Vector extraction

In this section, we will derive the propagation of feature un-
certainty in i-Vector extraction process. The training of to-
tal variability matrix is the same as in conventional i-Vector
extraction framework. When the testing speech utterances
are corrupted by noise, the conventional i-Vector extraction
framework can be written as follow:

w∗s = E[P (ws|Ys)], (4)

where Ys is the noise corrupted features.
We can rewrite the conditional distribution of i-Vector in

Eq. 4 as,

P (ws|Ys) ∝ P (y1, y2, ..., yn|ws)P (ws),

=

{
n∏

t=1

P (yt|ws)

}
N (ws; 0, I), (5)

where yt is the corrupted feature vector at each time frame
of t, P (ws) is the prior distribution of i-Vector assumed to
be N (ws; 0, I), n is the total frame number of given speech
utterance, and P (yt|ws) is the posterior probability of the cor-
rupted feature at tth time frame.

As the i-Vectors of enrollment model are extracted from
clean features xt, mismatch occurs when the testing i-Vectors
are extracted from corrupted features yt. The classical meth-
ods for compensating this mismatch are to perform the point
estimate of the clean features using either noise removal or
feature compensation methods. The estimated clean speech
features are then used for i-Vector extraction with the simple
assumption that the enhanced features x̂t are equal to its clean
correspondence xt.

However, the noise removal or feature compensation
methods can never be perfect. Therefore, a more rigorous
approach is to generate the joint probability of clean and
observed features and then marginalizing over all possible
hidden clean speech features [23]. Hence, P (yt|ws) in Eq. 5

can be rewritten as,

P (yt|ws) =

∫ +∞

−∞
P (yt, x|ws)dx, (6)

≈
∫ +∞

−∞
P (yt|x)P (x|ws)dx, (7)

where,

P (yt|x) = N (x; x̂t, σ
2
t ), (8)

P (x|ws) = N (x;m+ Tws,Σ). (9)

In Eq. 8, x̂t can be interpreted as the conventionally en-
hanced speech feature, and σ2

t as the uncertainty associated
with those features. Whereas various speech enhancement al-
gorithms can be modified to output σ2

t along with x̂t, only
SPLICE [23] and Joint-GMM based [24] uncertainty estima-
tion (Sec. 3.3) is used in this study. Note that Eq. 9 is referred
directly from Eq. 1 of conventional i-Vector derivation.

After replacing Eq. 7 with Eqs. 8 and 9, the posterior
probability of observed features can be written as follow:

P (yt|ws)

=

∫ +∞

−∞
N (x; x̂t, σ

2
t )N (x;m+ Tws,Σ)dx

=

∫ +∞

−∞
N (x̂t;x, σ

2
t )N (x;m+ Tws,Σ)dx

= N (x̂t;m+ Tws,Σ + σ2
t ). (10)

Finally, the conditional distribution of i-Vector given ob-
servation features can be derived as,

P (ws|Ys) ∝

{
n∏

t=1

P (yt|ws)

}
N (ws; 0, I),

=

{
n∏

t=1

N (x̂t;m+ Tws,Σ + σ2
t )

}
N (ws; 0, I)

= N (ws;U, V ), (11)

where,

U = (T ′PT + nI)−1TΣ−1Q, (12)

V = (T ′PT + nI)−1T, (13)

with

P =
∑
t

Nt(Σ + σ2
t )
−1
, (14)

Q =
∑
t

Nt(Σ + σ2
t )−1(x̂t −m), (15)

and Nt as the diagonal concatenation of the posterior proba-
bility of each mixture component P (c|x̂t). In this work, we
use the conditional expectation of i-Vector distribution as the
point estimate of the true i-Vector in a back-end classification
system. However, a more rigorous approach will be using the
above derived i-Vector distribution for the classification pur-
pose as in [2].
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3.2. Relation to conventional i-Vector system

As a special case, if the input uncertainty values of all features
are zero such that σ2

t = 0 in Eqs. 14 and 15, then the uncer-
tainty modified i-Vector system becomes exactly the same as
the conventional i-Vector system. Alternatively, if the uncer-
tainties of certain features are higher than others, then the con-
tribution of that feature in calculating the i-Vector distribution
is reduced.

3.3. Uncertainty estimation

The proposed uncertainty modified i-Vector extraction frame-
work requires the information of feature uncertainty as an
input. While this information is not directly obtainable, a
number of noise removal and feature compensation methods
[23, 25] have been modified to output the uncertainty of fea-
tures along with enhanced features. Those uncertainty esti-
mation methods combined with uncertainty decoding [23] or
modified imputation [26] have achieved much success in the
area of robust automatic speech recognition (ASR). As the
focus of this study is the propagation of uncertainty rather
than estimation, we borrowed two well known uncertainty es-
timation methods: SPLICE uncertainty estimation [23] and
joint-GMM based uncertainty estimation [24], for evaluating
the proposed uncertainty propagation framework for practical
applications.

3.3.1. SPLICE Uncertainty Estimation

With SPLICE uncertainty estimation, the conditional distri-
bution P (yt|x) in above Eqs. 7 and 8 is obtained as follow:

P (y|x) = N (x; x̂k, σ
2
x̂k

), (16)

where

x̂k =
Σ̄2

x(y + rk)− Γ2
kµ̄x

Σ̄2
x − Γ2

k

, (17)

σ2
x̂k

=
Σ̄2

xΓ2
k

Σ̄2
x − Γ2

k

, (18)

where k is the index of Gaussian component having the high-
est posterior probability, cepstral compensation vector rk and
its covariance Γk are trained from stereo data using a maxi-
mum likelihood criterion, and P (x) is obtained with the as-
sumption of a single Gaussian distribution N (µ̄x, Σ̄x). The
obtained P (y|x) in Eq. 16 will be used in the proposed un-
certainty modified i-Vector extraction.

3.3.2. Joint Uncertainty Estimation

In joint uncertainty estimation, the conditional distribution
P (yt|x) in Eqs. 7 and 8 is derived from the joint distribu-
tion of clean and noisy features,[

xt
yt

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
. (19)

The derived conditional distribution can be expressed as fol-
lows:

P (y|x) ≈ N (A(k)y + b(k),Σ
(k)
b ), (20)

where

A(k) = Σ(k)
x Σ(k)

yx

−1
, (21)

b(k) = µ(k)
x −A(k)µ(k)

y , (22)

Σ
(k)
b = A(k)Σ(k)

y A′(k) − Σ(k)
x , (23)

and k denotes the Gaussian component having the maximum
posterior probability. As in SPLICE uncertainty estimation,
the P (y|x) obtained in Eq. 20 will be used in the proposed
uncertainty modified i-Vector extraction.

4. EXPERIMENTS AND RESULTS

We evaluate the proposed uncertainty modified i-vector ex-
traction method on noisy database created by artificially
adding noise to YOHO and male part of NIST SRE 2010
telephone condition (condition 5).

4.1. System description

The baseline systems for all experiments are composed of 36-
dimension feature vectors (12 MFCC + ∆ + ∆∆) extracted
using a 25 ms window with 10 ms shift and normalized using
a 3-s sliding window. In all experiments, voice activity detec-
tion (VAD) is applied before noise addition in order to evalu-
ate the proposed system independent of the VAD quality. For
experiments on the noised NIST SRE 2010 corpus, we used
1024-component diagonal covariance universal background
models (UBM), 400 dimension i-Vector trained from Switch-
board II Phase 2 and 3, Switchboard Cellular Part 1 and 2, and
the NIST 2004, 2005, 2006 SRE enrollment data. The dimen-
sionality is reduced to 200 by LDA, followed by length nor-
malization and PLDA. For experiments on the noised YOHO
database, a 512-component UBM and 80 dimension i-Vector
extractor are used. The UBM and total variability matrix was
trained with the YOHO database.

4.2. Benchmarking with oracle uncertainty

In order to see how much improvement we can expect by us-
ing uncertainty modified i-Vector extraction, we performed
experiments using the oracle uncertainty on the noised NIST
SRE 2010 database. This noisy version of NIST SRE2010
database is created by artificially adding babble noise at dif-
ferent SNRs assuming that the original NIST SRE10 data is
clean. The babble noise is taken from the NOISEX database.
In this experiment, we define the oracle uncertainty as the
magnitude-squared error between noisy observation features
and its clean correspondence σ2

t = (yt − xt)2 [23]. The ora-
cle uncertainty of features is passed into the proposed i-Vector
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extraction system along with unprocessed noisy features. Our
purpose is to evaluate the proposed i-vector extraction method
independent of any enhancement and uncertainty estimation
strategy.

The results of the experiment are listed in Table 1. The
results indicate that the uncertainty modified i-Vector extrac-
tion framework has the potential of achieving up to 10∼20%
relative improvement over the state-of-the-art i-Vector based
speaker recognition system.

NIST SRE 2010
clean 10 dB 5 dB 0 dB -5 dB

i-Vector 2.07 5.70 12.08 22.17 35.45
i-Vector U - 4.56 10.15 20.11 32.05

Table 1. Comparison of the performance (EER %) of conven-
tional i-vector extraction system (i-Vector) and the proposed
uncertainty modified i-Vector extraction system with oracle
uncertainty (i-Vector U).

4.3. Experiment with estimated uncertainty

In the above experiment, an oracle uncertainty is used for
benchmarking the proposed uncertainty propagation frame-
work. However, in real applications the oracle uncertainty is
not achievable. In order to see the performance of the pro-
posed methods in more practical situations, we use the uncer-
tainty estimated from SPLICE and joint-GMM based method
for propagation. The noisy version of YOHO database is
used in this experiment. The YOHO database consists of 138
speakers with 30 female and 108 male speakers. For each
speaker, there are 4 enrollment sessions (each contains 24
phrases) and 10 verification sessions. The noisy version of
YOHO database is created by artificially adding babble noise
at different SNRs.

In this experiment, we consider the i-Vector extraction
system without any feature processing, the i-Vector extrac-
tion system with SPLICE and joint-GMM based feature en-
hancement, and the uncertainty modified i-Vector extraction
system using SPLICE and joint-GMM based uncertainty es-
timation. The result is listed in Table 2. The result shows that
the uncertainty modified i-Vector extraction system consis-
tently performs better than the conventional i-Vector systems
with both unprocessed and enhanced features. This confirms
the viability of incorporating uncertainty propagation in mod-
eling for i-Vector SID systems.

5. DISCUSSION

In this study, we considered the propagation of acoustic fea-
ture uncertainty in the state-of-the-art i-Vector extraction
system. The proposed uncertainty modified i-Vector extrac-
tion framework was tested using both oracle and practically
estimated uncertainty. Our experiment on the noisy version

YOHO

clean 10 dB 5 dB 0 dB
UN 1.61 7.62 16.05 25.02
SPLICE - 6.51 14.53 24.07
SPLICE U - 5.82 13.15 23.01
Joint-GMM - 4.71 9.83 18.47
Joint-GMM U - 4.20 8.25 17.65

Table 2. Performance (EER %) of speaker recognition sys-
tem without any feature processing (UN), using SPLICE
for feature enhancement (SPLICE), using SPLICE for pro-
posed uncertainty propagation (SPLICE U), using joint-
GMM method for feature enhancement (Joint-GMM), us-
ing joint-GMM method for proposed uncertainty propagation
(Joint-GMM U) .

of NIST SRE 2010 using oracle uncertainty indicated that
the proposed method has a great potential for improving the
robustness of speaker recognition especially in low SNR con-
ditions. In addition, the experiment using SPLICE and joint
uncertainty estimation methods showed that the proposed
method achieves improved recognition results in practical
situations as well.

In all experiments, we used a clean VAD in order to evalu-
ate the proposed algorithm independent of VAD performance.
However, it was observed that features from non-speech seg-
ment have significant amount of uncertainty. As the proposed
method could effectively reduce the contribution of those
unreliable features on extracted i-Vectors, we expect that the
proposed uncertainty modified i-Vector extraction method
could show further improvement over conventional i-Vector
extraction framework when VAD quality drops in realistic
noisy environments.

The proposed uncertainty propagation framework does
not have any reliance on SNR level when oracle uncertainty
is used as in Sec 3.2. However, the results in Table 2 shows
higher relative improvements when SNR is higher. This is
due to the fact that the quality of estimated uncertainty drops
as the SNR gets lower [24].

Whereas the proposed uncertainty propagation have
shown its robustness to noise on both NIST SRE and YOHO
database, the stereo based uncertainty estimation methods
employed in this study does not provide acceptable uncer-
tainty estimation on noisy version of NIST SRE 2010 accord-
ing to our initial experiment. We attribute this to their strong
reliance on high quality clean speech for training, We are
currently investigating the uncertainty estimation methods
that are suitable for large and complex corpora such as NIST
SRE.
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